全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 

基于局部邻域嵌入的无监督特征选择 Unsupervised Feature Selection Based on Local Neighborhood Embedding

Keywords: 机器学习,局部邻域嵌入,流形学习,无监督特征选择

Full-Text   Cite this paper   Add to My Lib

Abstract:

机器学习中,特征选择可以有效降低数据维度.考虑到流形学习能够保持原始数据的几何结构,l_(2,1)范数能够防止过拟合,提升模型的泛化能力,将二者结合起来可以提高特征选择的效果和效率.结合局部邻域嵌入(LNE)算法和l_(2,1)范数,提出一种新的无监督特征选择方法.其主要思想是:首先利用数据样本和邻域间的距离以及重构系数构造相似矩阵;其次构建低维空间并结合l_(2,1)范数进行稀疏回归;最后计算每个特征的重要性并选出最优特征子集.实验通过与几种典型的特征选择算法做对比,验证了所提算法的有效性.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133