全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

基于边界区域局部模糊增强的uppiRKM 聚类算法

DOI: 10.13195/j.kzyjc.2016.1307

Full-Text   Cite this paper   Add to My Lib

Abstract:

如何对交叉边界区域的数据对象进行度量与处理一直是粗糙k-means(RKM)及其衍生算法的主要出发点.uppiRKM算法通过引入Laplace无差别原则,较好地解决了传统RKM算法对权重系数的选择比较敏感等相关问题,但没有考虑边界区域多个类簇的交叉程度以及边界区域数据对象的空间位置分布对聚类结果的影响.鉴于此,设计一种对边界区域的数据对象进行局部模糊度量的方法,并提出基于边界区域局部模糊增强的uppiRKM聚类改进算法,通过多组实例分析验证了所提出算法的有效性.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133