|
- 2017
模糊聚类光滑支持向量机DOI: 10.13195/j.kzyjc.2015.1526 Abstract: 为了提高光滑支持向量机的分类速度和精度,构造一种模糊聚类光滑支持向量机(FCSSVM).运用模糊聚类将训练数据分解为若干子簇,通过引入 熵函数近似松弛向量的加函数,并利用最优解处权重向量的表达式导出精确光滑模型;定义测试样本的 最近邻子空间,以选择性集成策略组合若干近邻子空间中的分类决策函数.数值实验表明,FCSSVM的 分类精度高,迭代次数少,鲁棒性好,分类时间短.
|