全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 

基于多种群粒子群算法和布谷鸟搜索的联合寻优算法

DOI: 10.13195/j.kzyjc.2015.0352

Keywords: 粒子群算法,动态多种群,布谷鸟搜索,中位数聚类

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了提高动态多种群粒子群(DMS-PSO) 算法的全局搜索能力, 将布谷鸟搜索算法(CS) 引入DMS-PSO 算法中, 提出DMS-PSO-CS 算法. 采用中位数聚类算法将整个种群动态划分为若干小种群, 各个小种群作为底层种群通过PSO 算法进行寻优, 再将每个小种群中的最优粒子作为高层种群的粒子通过CS 算法进行深度优化. 将所提出算法应用于CEC 2014 测试函数, 并与CS 算法和其他改进的PSO 算法进行比较. 实验结果表明, 所提出算法能够显著提高全局搜索能力和算法效率.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133