全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

基于邻域粗糙互信息熵的非单调性属性约简

DOI: 10.13195/j.kzyjc.2017.1065

Full-Text   Cite this paper   Add to My Lib

Abstract:

属性约简是粗糙集理论一项重要的应用,目前已广泛运用于机器学习和数据挖掘等领域,邻域粗糙集是粗糙集理论中处理连续型数据的一种重要方法.针对目前邻域粗糙集模型中属性约简存在的缺陷,构造一种基于邻域粗糙集的邻域粗糙熵模型,并基于此给出邻域粗糙联合熵、邻域粗糙条件熵和邻域粗糙互信息熵等概念.邻域粗糙互信息熵是评估属性集相关性的一种重要的方法,具有非单调性变化的特性,对此,提出一种基于邻域粗糙互信息熵的非单调性属性约简算法.实验分析表明,所提出算法不仅比目前已有的单调性属性约简算法具有更优越的属性约简结果,而且具有更高的约简效率.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133