全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

基于核映射极限学习机的入口氮氧化物预测

DOI: 10.13195/j.kzyjc.2017.0543

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对在线贯序极限学习机(OS-ELM)算法隐含层输出不稳定、易产生奇异矩阵和在线贯序更新时没有考虑训练样本时效性的问题,提出一种基于核函数映射的正则化自适应遗忘因子(FFOS-RKELM)算法.该算法利用核函数代替隐含层,能够产生稳定的输出结果.在初始阶段加入正则化方法,通过构造非奇异矩阵提高模型的泛化能力;在贯序更新阶段,通过新到的数据自动更新遗忘因子.将FFOS-RKELM算法应用到混沌时间序列预测和入口氮氧化物时间序列预测中,相比于OS-ELM、FFOS-RELM、OS-RKELM算法,可有效地提高预测精度和泛化能力.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133