全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

具有强解释性的贝叶斯MA型模糊系统

DOI: 10.13195/j.kzyjc.2016.1418

Full-Text   Cite this paper   Add to My Lib

Abstract:

提出用于规则前件学习的中心点交叉涌现的大间隔贝叶斯模糊聚类(CECLM-BFC)算法.考虑不同样本间聚类中心的排斥作用使得聚类中心间距最大化,并采用粒子滤波方法在不同类别样本中交替执行,自动求解出最优聚类结果,包括聚类数、模糊隶属度和聚类中心.在模糊规则后件参数学习上使用分类面大间隔的策略,以MA型模糊系统为研究对象构造具有强解释性的贝叶斯MA型模糊系统(BMA-FS).实验结果表明,BMA-FS能够取得令人满意的分类性能,且模糊规则具有高度的解释性.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133