全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 

基于严格残差选择的非视距定位算法

DOI: 10.12068/j.issn.1005-3026.2016.09.002

Keywords: 无线传感器网络, 非视距定位, 扩展卡尔曼滤波, 严格残差, 线性回归模型
Key words: wireless sensor network non-line-of-sight(NLOS) localization extend Kalman filter strict residual linear regression model

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要 无线传感器网络的移动定位近年来受到越来越多的关注.影响精确定位的一个很重要因素是非视距传播信号的存在,非视距误差使得定位精度严重下降.通过分析非视距测量值残差的特性,提出了一种严格残差选择方法来鉴别距离测量值的状态.首先利用扩展卡尔曼滤波(EKF)算法的线性回归模型获得距离测量值的残差,然后利用严格残差选择来对残差进行筛选,最后利用并行变节点EKF算法完成定位.仿真结果表明提出的算法在非视距情况下的定位效果要优于其他算法,在不同环境下该算法具有更好的鲁棒性和更高的定位精度.
Abstract:Mobile localization in wireless sensor networks (WSNs) has attracted considerable attention in recent years. One of the most important factors affecting the accuracy of localization or tracking is non-line-of-sight (NLOS) signal propagation. The NLOS error could seriously reduce the localization accuracy. By analyzing the characteristics of the residual of NLOS distance measurements, a strict residual selection method was proposed to identify the condition of the distance measurements. In this algorithm, extend Kalman filter (EKF) linear regression model was firstly utilized to get distance residuals. Then the strict residual selection was used to filtrate the residuals. Finally the localization was finished by using the parallel variable node EKF algorithm. Simulation results show that the localization of the proposed algorithm outperforms the other algorithms compared in NLOS conditions. The proposed algorithm has better robustness and higher accuracy in different environments.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133