|
- 2018
生物医用Zn-5Al合金的微观组织与性能DOI: 10.12068/j.issn.1005-3026.2018.01.010 Keywords: Zn-5Al合金, 生物医用, 显微组织, 轧制, 力学性能Key words: Zn-5Al alloy biomedical microstructure rolling mechanical property Abstract: 摘要 研究了生物医用Zn-5Al合金的微观组织结构演化,探讨了其组织对力学性能的影响.对铸态、均匀化处理和轧制态Zn-5Al合金的微观组织进行了表征,分析了合金的相组成,测试了轧制态Zn-5Al合金的力学性能.结果表明:铸态与均匀化处理后的Zn-5Al合金的相组成均主要为η-Zn相和α-Al相,铸态合金组织片层间距约为300nm.均匀化处理过程中发生了共析反应,合金中的α-Al相由铸态的长条形演变为球形共晶组织.经过总变形率85%的热轧变形后,Zn-5Al合金的屈服强度和抗拉强度分别为98MPa和130MPa,断裂延伸率达到74%.Abstract:The phase selection and microstructural evolution of biodegradable biomedical Zn-5Al alloy were studied. The microstructure of as casting, after homogenization treatment and the rolled Zn-5Al alloy was characterized, respectively and the phase compositions of the Zn-5Al alloy was analyzed.Then the mechanical properties of the rolled Zn-5Al alloy were tested. The results showed that the phase compositions of the as casting Zn-5Al alloy and after homogenization treatment were mainly composed by the η-Zn phase and α-Al phase. The interlamellar spacing of the eutectic structure in the as casting Zn-5Al alloy was about 300nm.The eutectoid reaction occurred during the homogenization treatment and the α-Al phase of the Zn-5Al alloy was changed from the original strip shape to spherical eutectic structure after homogenization treatment. After rolling of 85% for a total deformation rate, the yield and tensile strength of the Zn-5Al alloy were 98MPa and 130MPa, respectively, and its fracture elongation reached 74%.
|