全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 

利用生成模型的人体行为识别

DOI: 10.11887/j.cn.201602012

Keywords: 行为识别 词表压缩 信息瓶颈算法 生成模型
behavior recognition vocabulary compression agglomerative information bottleneck generative model

Full-Text   Cite this paper   Add to My Lib

Abstract:

选取关键点轨迹的方向-大小描述符、轨迹形状描述符、外观描述符作为人体行为的特征;为了降低人体行为特征维数,利用信息瓶颈算法进行词表压缩;利用生成模型,结合已标记样本和未标记样本提出一种人体行为识别的半监督学习方法,解决了行为识别中的小样本问题。在YouTube 数据库、 中佛罗里达大学运动数据库上利用提出的方法与已有的方法进行对比实验,结果表明该方法具有更高的识别精度。
A novel method based on generative model was proposed for human behavior recognition. The behavior was represented by using a set of descriptors computed from key point trajectories, which included the orientation magnitude descriptor, the trajectory shape descriptor and the appearance descriptor. In order to reduce feature dimensions, the agglomerative information bottleneck approach was used for vocabulary compression. The semi-supervised learning method for behavior recognition based on generative model was proposed to solve the problem of small sample in recognition, which made use of both the labeled and unlabeled samples. Compared with other state-of-the-art methods in both UCF sports database and YouTube database, results show that the proposed method has higher recognition accuracy.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133