|
控制理论与应用 2018
推力矢量飞行器的自抗扰控制设计及控制分配
|
Abstract:
推力矢量飞行器往往需要在大功角等具有大不确定性和强非线性的区域高质量地完成飞行动作, 因此, 如何应 对大范围不确定性是推力矢量飞行器控制设计的关键问题. 另一方面, 推力矢量飞行器包含多种控制输入并且不同控制 输入具有不同物理特性. 因此, 控制输入分配也是推力矢量飞行器控制设计的关键问题. 为了对付大范围的不确定性, 本文引入虚拟控制量的概念, 采用自抗扰控制技术实现对飞行过程中的总扰动的实时估计和补偿. 进一步, 考虑控制输 入的物理约束条件, 提出了保证虚拟控制量达到设计值并使得发动机能耗最小的控制输入分配方案. 通过建立对应的优 化问题, 严格分析其最优解的性质并提出了有限步求解最优控制分配输入量的算法. 在仿真环境下, 提出的控制算法有 效实现了推力矢量飞行器大功角区域的机动动作, 并能应对大范围的气动参数不确定性.
Since the extreme maneuverability such as high angle of attack maneuvering is commonly required for thrust-vectored aircraft under various uncertainties and strong nonlinearity, how to handle large scale uncertainties is a crucial control problem. Additionally, due to the different physical characteristics of redundant control inputs, the control allocation strategy is also critical. To achieve high performance of thrust-vectored aircraft despite various uncertainties, this paper proposes an active disturbance rejection control approach to design a virtual control input composed of timely compensation for the total disturbance. Moreover, under the physical constraints of control inputs, the control allocation strategy is proposed not only to realize the designed virtual control input, but also, more importantly, to minimize energy consumption of engine. By systematically establishing the equivalent optimization problems and rigorously studying the properties of the corresponding optimal solutions, a control allocation algorithm in a finite number of steps is further proposed. Finally, simulation results illustrate that the high performance of high angle of attack maneuvering and strong robustness under large uncertainties of aerodynamic parameters are satisfied via the proposed control approach.