|
控制理论与应用 2016
根据混合选择策略的直觉模糊核匹配追踪集成算法
|
Abstract:
为了从分类器集成系统中选择出一组差异性大的子分类器, 从而提高集成系统的泛化能力, 提出了一种基 于混合选择策略的直觉模糊核匹配追踪算法. 基本思想是通过扰动训练集和特征空间生成一组子分类器; 然后采 用k均值聚类算法将对所得子分类器进行修剪, 删去其中的冗余分类器; 最后根据实际识别目标动态选择出较高识 别率的分类器组合, 使选择性集成规模能够随识别目标的复杂程度而自适应地变化, 并基于预期识别精度实现循环 集成. 实验结果表明, 与其他常用的分类器选择方法相比, 本文方法灵活高效, 具有更好的识别效果和泛化能力.
In order to improve the generalization ability of a classifier ensemble, we propose an intuitionistic fuzzy kernel-matching pursuit algorithm based on the hybrid selection strategy for target recognition to select a subset of optimal individuals from the given classifier ensemble. The basic idea of this algorithm is to produce a preliminary subset of classifiers by disturbing the training set and the feature space, and then trim this subset by eliminating the redundant classifiers based on k-means clustering algorithm and dynamically singling out classifiers with high differentiability from practical object recognition, making the size of the subset adaptively change according to the complexity of the objects and the expected accuracy of recognition be determined recursively. Experimental results show that the performance of the proposed algorithm is more flexible, efficient and accurate, with higher generalization, in comparison to other classifier selection methods.