|
- 2017
NiS2纳米片的制备及其在非对称超级电容器中的应用
|
Abstract:
摘要 本文采用牺牲模板法,以Ni(OH)2作为前驱体制备NiS2. 通过对NiS2进行XRD、EDS、BET、SEM及TEM等表征来研究NiS2的元素组成及结构形貌. SEM及TEM结果显示前驱体及NiS2均为纳米片结构. 电化学测试结果表明NiS2存在着优秀的电容性能,在电流密度为1 A·g-1时,NiS2比电容能够达到1067.3 F·g-1,同时具有高的倍率特性. 为了进一步探究NiS2作为电活性材料的实用性,以NiS2作为阳极材料,活性碳(AC)作为阴极组装成非对称超级电容器,在功率密度为0.8 kW·kg-1,能量密度高达38.4 Wh·kg-1,并且在3000次恒流充放电后,比电容依然保持93.7%
[1] | Chen H, Hu L F, Yan Y, et al. One-step fabrication of ultrathin porous nickel hydroxide-manganese dioxide hybrid nanosheets for supercapacitor electrodes with excellent capacitive performance[J]. Advanced Energy Materials, 2013, 3(12): 1636-1646. |
[2] | Ruan Y J, Jiang J J, Wan H Z, et al. Rapid self-assembly of porous square rod-like nickel persulfide via a facile solution method for high-performance supercapacitors[J]. Jounal of Power Sources, 2016, 301: 122-130. |
[3] | Chen H C, Jiang J J, Zhang L, et al. In situ growth of NiCo2S4 nanotube arrays on Ni foam for supercapacitors: Maximizing utilization efficiency at high mass loading to achieve ultrahigh areal pseudocapacitance[J]. Jounal of Power Sources, 2014, 254: 249-257. |
[4] | Chen H C, Jiang J J, Zhao Y D, et al. One-pot synthesis of porous nickel cobalt sulphides: tuning the composition for superior pseudocapacitance[J]. Journal Materials Chemistry A, 2015, 3(1): 428-437. |
[5] | Zhang Y, Sun W P, Rui X H, et al. One-pot synthesis of tunable crystalline Ni3S4@Amophous MoS2 core/shell nanospheres for high-performance supercapacitors[J]. Small, 2015, 11 (30): 3694-3702. |
[6] | Chou S W, Lin J Y. Cathodic Deposition of Flaky Nickel Sulfide Nanostructure as an Electroactive Material for High-Performance Supercapacitors[J]. Journal of The Electrochemical Society, 2013, 160(4): D178-D182. |
[7] | Yang J Q, Duan X C, Guo W, et al. Electrochemical performances investigation of NiS/GO composite as electrode material for supercapacitors[J]. Nano Energy, 2014, 5: 74-81. |
[8] | Pang H, Wei C Z, Li X X, et al. Microwave-assisted synthesis of NiS2 nanostructures for supercapacitors and cocatalytic enhancing photocatalytic H2 production[J]. Scientific Reports, 2014, 4: 3577. |
[9] | Li J J, Hu Y X, Liu M C, et al. Mechanical alloying synthesis of Ni3S2 nanoparticles as electrode material for pseudocapacitor with excellent performances[J]. Journal of Alloys Compounds, 2016, 656: 138-145. |
[10] | Xing J C, Zhu Y L, Zhou Q W, et al. Fabrication and shape evolution of CoS2 octahedrons for application in supercapacitors[J]. Electrochimica Acta, 2014, 136: 550-556. |
[11] | Dai Z Y, Zang X X, Yang J, et al. Template synthesis of shape-tailorable NiS2 hollow prisms as high-performance supercapacitor materials[J]. ACS Applied materials & Interfaces, 2015, 7 (45): 25396-25401. |
[12] | Zhang H H, Guan B, Gu J N, et al. One-step synthesis of nickel cobalt sulphides particles: tuning the composition for high performance supercapacitors [J]. RSC Advances, 2016, 6(64): 58916-58924. |
[13] | Dai C S, Chien P Y, Lin J Y, et al. Hierarchically structured Ni3S2/Carbon nanotube compoosites as high performance cathode materials for asymmetric supercapacitors[J]. ACS Applied materials & Interfaces, 2013, 5(22): 12168-12174. |
[14] | Zhu Y R, Wu Z B, Jing M J, et al. Mesoporous NiCo2S4 nanoparticles as high-performance electrode materials for supercapacitors[J]. Journal of Power Sources, 2015, 273:584-590. |
[15] | Pu J, Cui F L, Chu S B, et al. Preparation and electrochemical characterization of hollow hexagonal NiCo2S4 nanoplates as pseudocapacitor materials[J]. ACS Sustainable Chemistry & Engineering, 2014, 2(4): 809-815. |
[16] | Xu X, Zhou H, Ding S J, et al. The facile synthesis of hierarchical NiCoO2 nanotubes comprised ultrathin nanosheets for supercapacitors[J]. Journal of Power Sources, 2014, 267: 641-647. |