全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

液态Wood合金在NaOH电解质溶液中的电毛细变形现象
Electric current induced flow and electrocapillary deformation of liquid Wood alloy in NaOH aqueous solution

DOI: 10.13208/j.electrochem.160411

Keywords: 电毛细作用,铺展动力,表面张力,
Capillarity
,Spreading dynamics,Surface tension

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要 本文研究了液态Wood合金在氢氧化钠电解质溶液中,通过施加外电场,进而诱发液态金属电毛细变形的现象. 当石墨电极伸入金属液滴内部时,通电后在金属表面发生的电极反应,促使金属表面形成氧化膜或去除氧化膜. 由于氧化膜与液态金属的表面张力存在巨大差异,通电后电极极性的变化可实现金属液滴形状的快速可逆变形.在液态金属与电解质溶液之间形成的双电子层中,当两侧聚集同极性电荷时将降低界面张力.为维持通电后体系自由能最小,将迫使液体金属增大与溶液之间的界面面积,在宏观上表现为液体金属的变形,由于液态金属与氢氧化钠反应后自身携带负电荷,在电场力的作用下可有效地驱动液态金属在电解质溶液中的运动

References

[1]  Junghoon L, Chang-Jin K. Surface-tension-driven microactuation based on continuous electrowetting. Journal of Microelectromechanical Systems 2000;9:171-80.
[2]  Gough RC, Morishita AM, Dang JH, et al. Rapid electrocapillary deformation of liquid metal with reversible shape retention. Micro and Nano Systems Letters 2015;3:1-9.
[3]  Vancauwenberghe V, Di Marco P, Brutin D. Wetting and evaporation of a sessile drop under an external electrical field: A review. Colloids Surf, A 2013;432:50-6.
[4]  Wang L, Liu J. Electromagnetic rotation of a liquid metal sphere or pool within a solution. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 2015;471.
[5]  Zhong Y, Guo Q, Li S, et al. Thermal and mechanical properties of graphite foam/Wood’s alloy composite for thermal energy storage. Carbon 2010;48:1689-92.
[6]  Massalski TB. Binary phase diagram (CD-ROM). ASM International 1996.
[7]  So J-H, Thelen J, Qusba A, et al. Reversibly Deformable and Mechanically Tunable Fluidic Antennas. Adv Funct Mater 2009;19:3632-7.
[8]  Mumcu G, Dey A, Palomo T. Frequency-Agile. Bandpass Filters Using Liquid Metal Tunable Broadside Coupled Split Ring Resonators. IEEE Microwave Compon Lett 2013;23:187-9.
[9]  Rashed Khan M, Hayes GJ, So J-H, et al. A frequency shifting liquid metal antenna with pressure responsiveness. Appl Phys Lett 2011;99:013501.
[10]  Krupenkin T, Taylor JA. Reverse electrowetting as a new approach to high-power energy harvesting. Nat Commun 2011;2:448.
[11]  Chen L, Bonaccurso E. Electrowetting — From statics to dynamics. Adv Colloid Interface Sci 2014;210:2-12.
[12]  Lippmann G. Relation entre les ph′enom`enes′electriques et capillaires. Ann Chim Phys 1875;5:494-549.
[13]  Tang S-Y, Sivan V, Khoshmanesh K, et al. Electrochemically induced actuation of liquid metal marbles. Nanoscale 2013;5:5949-57.
[14]  Sheng L, Zhang J, Liu J. Diverse Transformations of Liquid Metals Between Different Morphologies. Adv Mater 2014;26:6036-42.
[15]  Gough RC, Morishita AM, Dang JH, et al. Continuous Electrowetting of Non-toxic Liquid Metal for RF Applications. IEEE Access 2014;2:874-82.
[16]  Tang S-Y, Khashayar Khoshmanesh, Vijay Sivan, et al. Liquid metal enabled pump. PNAS 2014;111:3304-9.
[17]  Jackel JL, Hackwood S, Veselka JJ, Beni G. Electrowetting switch for multimode optical fibers. Appl Opt 1983;22:1765-70.
[18]  Yuan B, Tan S, Zhou Y, et al. Self-powered macroscopic Brownian motion of spontaneously running liquid metal motors. Science Bulletin 2015;60:1203-10.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133