全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

一种新型的碳复合钼掺杂的钒氧化物纳米线钠离子电池正极材料
A New Type Carbon Composited Molybdenum Doped Vanadium Oxide Nanowires as a Cathode Material for Sodium Ion Batteries

DOI: 10.13208/j.electrochem.160428

Keywords: 钠离子电池,正极材料,钼钒氧化物,碳复合,纳米线,
sodium ion batteries
,cathode materials,molybdenum-vanadium oxides,carbon compositing,nanowires

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要 近年来,由于锂资源逐渐紧缺而导致其成本增加,锂离子电池发展受到了限制. 作为一个有潜力的替代者,有着相似电化学机制且成本较低的钠离子电池则发展迅速. 但由于钠离子与锂离子相较有着更大半径,在钠离子脱嵌过程中,对大多数电极材料的晶体结构破坏严重. 因此,开发新型电极材料对钠离子电池的进一步发展尤为重要. 其中,层状钒氧化物作为正极材料被广泛研究. 在这项工作中,作者基于钒氧化物,引入钼元素并与碳复合,首次设计合成了一种新型的碳复合钼掺杂的钒氧化物纳米线电极材料,并获得了优良的电化学性能(在50 mA?g-1的电流密度下,最高放电比容量达135.9 mAh?g-1,并在循环75次后仍有82.6 mAh?g-1的可逆容量,容量保持率高达71.8%;在1000 mA?g-1的高电流密度下循环并回到50 mA?g-1后,可逆放电比容量仍能回复至111.5 mAh?g-1). 本工作的研究结果证明,这种具有超大层间距的新型碳复合钼掺杂的钒氧化物纳米线是一种非常有潜力的储钠材料,并且我们的工作为钠离子电池的进一步发展提供了一定的理论基础

References

[1]  Sun C, Deng Y, Wan L, et al. Graphene Oxide-Immobilized NH2-Terminated Silicon Nanoparticles by Cross-Linked Interactions for Highly Stable Silicon Negative Electrodes[J]. ACS Applied Materials & Interfaces, 2014, 6(14):11277-11285.
[2]  Kim H, Dong J K, Seo D H, et al. Ab Initio Study of the Sodium Intercalation and Intermediate Phases in Na0.44MnO2 for Sodium-Ion Battery[J]. Chemistry of Materials, 2012, 24(6):1205-1211.
[3]  Turner N H, Single A M. Determination of peak positions and areas from wide-scan XPS spectra[J]. Surface & Interface Analysis, 1990, 15(3):215-222.
[4]  Wang D, Wei Q, Sheng J, et al. Flexible additive free H2V3O8 nanowire membrane as cathode for sodium ion batteries[J]. Physical Chemistry Chemical Physics, 2016, 18(17):12074-12079.
[5]  Chunnian H, Shan W, Naiqin Z, et al. Carbon-encapsulated Fe3O4 nanoparticles as a high-rate lithium ion battery anode material[J]. Acs Nano, 2013, 7(5):4459-4469.
[6]  Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861):359-367.
[7]  Li Y M, Hibino M, Tanaka Y, et al. Evaluation of Mo-doped amorphous V2O5 films as a positive electrode for lithium batteries[J]. Solid State Ionics, 2001, 143(1):67-72.
[8]  Brox B, Olefjord I. ESCA Studies of MoO2 and MoO3[J]. Surface\s&\sinterface Analysis, 1988, 13(1):3-6.
[9]  Cornaglia L M, Lombardo E A. XPS studies of the surface oxidation states on vanadium-phosphorus-oxygen (VPO) equilibrated catalysts[J]. Applied Catalysis A General, 1995, 26(45):125-138.
[10]  Qinyou A, Fan L, Qiuqi L, et al. Amorphous Vanadium Oxide Matrixes Supporting Hierarchical Porous Fe3O4/Graphene Nanowires as a High-Rate Lithium Storage Anode[J]. Nano Letters, 2014, 14(11):6250-6256.
[11]  Shanmugam M, Alsalme A, Alghamdi A, et al. Enhanced Photocatalytic Performance of the Graphene-V2O5 Nanocomposite in the Degradation of Methylene Blue Dye under Direct Sunlight.[J]. ACS Applied Materials & Interfaces, 2015, 868(27):53-59.
[12]  Yifu Z, Xinghai L, Dongzhi C, et al. Fabrication of V3O7·H2O@C core-shell nanostructured composites and the effect of V3O7·H2O and V3O7·H2O@C on decomposition of ammonium perchlorate[J]. Solid State Ionics, 2011, 509(5):L69-L73.
[13]  Bruce P G, Freunberger S A, Hardwick L J, et al. Li-O2 and Li-S batteries with high energy storage[J]. Nature Materials, 2012, 11(1):19-29.
[14]  Kang K, Meng Y S, Breger J, et al. Electrodes with High Power and High Capacity for Rechargeable Lithium Batteries[J]. Science, 2006, 311(5763):977-980.
[15]  Wang H. Ultrathin Na1.08V3O8 nanosheets-a novel cathode material with superior rate capability and cycling stability for Li-ion batteries[J]. Energy & Environmental Science, 2012, 5(5):6173-6179.
[16]  Wang S, Li S, Sun Y, et al. Three-dimensional porous V2O5 cathode with ultra high rate capability[J]. Energy & Environmental Science, 2011, 4(8):2854-2857.
[17]  Zheng C, Qin Y, Ding W, et al. Design and Synthesis of Hierarchical Nanowire Composites for Electrochemical Energy Storage[J]. Advanced Functional Materials, 2009, 19(21):3420-3426.
[18]  Park D Y, Myung S T. Carbon-Coated Magnetite Embedded on Carbon Nanotubes for Rechargeable Lithium and Sodium Batteries[J]. ACS Applied Materials & Interfaces, 2014, 6(14):11749-11757.
[19]  Moser T P, Schrader G L. Stability of model V-P-O catalysts for maleic anhydride synthesis[J]. Journal of Catalysis, 1987, 104(1):99-108.
[20]  Wang H, Gao X, Feng J, et al. Nanostructured V2O5 arrays on metal substrate as binder free cathode materials for sodium-ion batteries[J]. Electrochimica Acta, 2015, 182:769-774.
[21]  Wu H, Chan G, Choi J W, et al. Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control[J]. Nature Nanotechnology, 2012, 7(5):310-315.
[22]  Hong S Y, Kim Y, Park Y, et al. ChemInform Abstract: Charge Carriers in Rechargeable Batteries: Na Ions vs. Li Ions[J]. Energy & Environmental Science, 2013, 6(7):2067-2081.
[23]  Ellis B L, Nazar L F. Sodium and sodium-ion energy storage batteries[J]. Current Opinion in Solid State & Materials Science, 2012, 16(4):168-177.
[24]  Li H, Wu C, Wu F, et al. Sodium Ion Battery: A Promising Energy-storage Candidate for Supporting Renewable Electricity[J]. Acta Chimica Sinica, 2014, 72(1):21-29.
[25]  Yan Y, Mcdowell M T, Ill R, et al. Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life[J]. Nano Letters, 2011, 11(7):2949-2954.
[26]  Wang X, Li G, Hassan F M, et al. Sulfur covalently bonded graphene with large capacity and high rate for high-performance sodium-ion batteries anodes[J]. Nano Energy, 2015, 15:746-754.
[27]  Lux S F, Placke T, Engelhardt C, et al. Enhanced Electrochemical Performance of Graphite Anodes for Lithium-Ion Batteries by Dry Coating with Hydrophobic Fumed Silica[J]. Journal of the Electrochemical Society, 2012, 159(11):A1849-A1855.
[28]  Jiang Y, Yang Z, Li W, et al. Nanoconfined Carbon-Coated Na3V2(PO4)3 Particles in Mesoporous Carbon Enabling Ultralong Cycle Life for Sodium-Ion Batteries[J]. Advanced Energy Materials, 2015, 5(10):1402104.
[29]  Wei Q, Liu J, Feng W, et al. Hydrated vanadium pentoxide with superior sodium storage capacity[J]. Journal of Materials Chemistry A, 2015, 3(15):8070-8075.
[30]  Palomares V, Serras P, Villaluenga I, et al. Na-ion batteries, recent advances and present challenges to become low cost energy storage systems[J]. Energy & Environmental Science, 2012, 5(3):5884-5901.
[31]  Kim S W, Seo D H, Ma X, et al. Electrode Materials for Rechargeable Sodium-Ion Batteries: Potential Alternatives to Current Lithium-Ion Batteries[J]. Advanced Energy Materials, 2012, 2(7):710-721.
[32]  Ong S P, Chevrier V L, Hautier G, et al. Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials[J]. Energy & Environmental Science, 2011, 4(9):3680-3688.
[33]  Liu J, Zhang J G, Yang Z, et al. Materials Science and Materials Chemistry for Large Scale Electrochemical Energy Storage: From Transportation to Electrical Grid[J]. Advanced Functional Materials, 2013, 23(8):929-946.
[34]  Fergus J W. Recent developments in cathode materials for lithium ion batteries[J]. Journal of Power Sources, 2010, 195(4):939-954.
[35]  Chao D, Xia X, Liu J, et al. Lithium-Ion Batteries: A V2O5/Conductive-Polymer Core/Shell Nanobelt Array on Three-Dimensional Graphite Foam: A High-Rate, Ultrastable, and Freestanding Cathode for Lithium-Ion Batteries [J]. Advanced Materials, 2014, 26(33):5794-5800.
[36]  Raju V, Rains J, Gates C, et al. Superior Cathode of Sodium-Ion Batteries: Orthorhombic V2O5 Nanoparticles Generated in Nanoporous Carbon by Ambient Hydrolysis Deposition[J]. Nano Letters, 2014, 14(7):4119-4124.
[37]  Jinzhi, Sheng, Qiulong, et al. Metastable amorphous chromium-vanadium oxide nanoparticles with superior performance as a new lithium battery cathode[J]. Nano Research, 2014, 7(11):1604-1612.
[38]  Recham N, Chotard J N, Dupont L, et al. A 3.6 V lithium-based fluorosulphate insertion positive electrode for lithium-ion batteries[J]. Nature Material, 2010, 9(1):68-74.
[39]  Shubin Y, Xinliang F, Klaus M. Sandwich-like, graphene-based titania nanosheets with high surface area for fast lithium storage[J]. Advanced Materials, 2011, 23(31):3575-3579.
[40]  Wang Y, Cao G. Developments in Nanostructured Cathode Materials for High-Performance Lithium-Ion Batteries[J]. Advanced Materials, 2008, 20(12):2251-2269.
[41]  Mai L, Xu X, Han C, et al. Rational synthesis of silver vanadium oxides/polyaniline triaxial nanowires with enhanced electrochemical property[J]. Nano Letters, 2011, 11(11):4992-4996.
[42]  Xiujuan W, Qinyou A, Qiulong W, et al. A Bowknot-like RuO2 quantum dots@V2O5 cathode with largely improved electrochemical performance[J]. Physical Chemistry Chemical Physics, 2014, 16(35):18680-18685.
[43]  Shen W, Li H, Wang C. Improved electrochemical performance of the Na3V2(PO4)3 cathode by B-doping of the carbon coating layer for sodium-ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(29):15190-15201.
[44]  Zhang C X. Electrochemical Characteristics of C-doped NaVPO4F Cathode Material for Sodium-ion Battery[J]. Chinese Journal of Inorganic Chemistry, 2007, 23(4):649-654.
[45]  Oh S M, Myung S T, Yoon C S, et al. Advanced Na[Ni0.25Fe0.5Mn0.25]O2/C-Fe3O4 sodium-ion batteries using EMS electrolyte for energy storage[J]. Nano Letters, 2014, 14(3):1620-1626.
[46]  Ge Y, Jiang H, Fu K, et al. Copper-doped Li4Ti5O12/carbon nanofiber composites as anode for high-performance sodium-ion batteries[J]. Journal of Power Sources, 2014, 272(272):860-865.
[47]  Jiang J, Tan G, Peng S, et al. Electrochemical performance of carbon-coated Li3V2(PO4)3 as a cathode material for asymmetric hybrid capacitors[J]. Electrochimica Acta, 2013, 107(3):59-65.
[48]  Ying W, Katsunori T, Huamei S, et al. Synthesis and electrochemical properties of vanadium pentoxide nanotube arrays[J]. Journal of Physical Chemistry B, 2005, 109(8):3085-3088.
[49]  Wei Q, Jiang Z, Tan S, et al. Lattice Breathing Inhibited Layered Vanadium Oxide Ultrathin Nanobelts for Enhanced Sodium Storage[J]. ACS Applied Materials & Interfaces, 2015, 7(33):18211?18217.
[50]  Muller-Bouvet D, Baddour-Hadjean R, Tanabe M, et al. Electrochemically formed α-NaV2O5: A new sodium intercalation compound[J]. Electrochimica Acta, 2015, 176:586-593.
[51]  Zhu K, Zhang C, Guo S, et al. Sponge-Like Cathode Material Self-Assembled from Two-Dimensional V2O5 Nanosheets for Sodium-Ion Batteries[J]. Chemelectrochem, 2015, 2(11):1660-1664.
[52]  Yang Y. Carbon dots supported upon N-doped TiO2 nanorods applied into sodium and lithium ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(10):5648-5655.
[53]  Simeone R, Misztal I, Aguilar I, et al. Evaluation of the utility of diagonal elements of the genomic relationship matrix as a diagnostic tool to detect mislabelled genotyped animals in a broiler chicken population[J]. Journal of Animal Breeding & Genetics, 2011, 128(5):386-393.
[54]  Pouchko S V, Ivanov-Schitz A K. Lithium insertion into γ-type vanadium oxide bronzes doped with molybdenum(VI) and tungsten(VI) ions[J]. Solid State Ionics, 2001, 144(1):151-161.
[55]  Jun L, Kepeng S, Changbao Z, et al. Ge/C nanowires as high-capacity and long-life anode materials for Li-ion batteries[J]. Acs Nano, 2014, 8(7):7051-7059.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133