全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

锰氧化物聚苯胺复合电极材料的制备与性能
Preparation and Properties of? Manganese Oxide and Polyaniline-Carbon Composite Electrode

DOI: 10.13208/j.electrochem.170510

Keywords: 锰氧化物,聚苯胺,活性炭,电极材料,超级电容器,
manganese oxide
,polyaniline,active carbon,electrode material,supercapacitor

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要 本文制备了二氧化锰和聚苯胺碳的复合电级材料(MnO2-PAnC),测试结果表明MnO2-PAnC材料为松散结构组成的纳米颗粒. MnO2-PAnC 材料的比电容最大可达459 F?g-1,MnO2-PAnC电极在较高的扫速下循环伏安曲线变形较小,表现出良好的可逆性. 交流阻抗测试结果表明,MnO2-PAnC 电极电荷传递电阻小,表面离子扩散速度快. 充放电500个循环后,MnO2-PAnC 电容的保持率仍高于60%. 以上实验结果表明,MnO2-PAnC 是很好的超级电容器的电极材料.
The polyaniline-carbon (PAnC) electrode was prepared by the polymerization of aniline monomer and activated carbon in ice water bath, and followed by chemical deposition of manganese dioxide MnO2-PAnC composite material. The specific capacitance of MnO2-PAnC reached 459 F?g-1. The cyclic voltammetric results showed a small deformation in the voltammogram curve obtained with the MnO2-PAnC electrode at high scan rate, indicating good reversibility and capacitive properties. The AC impedance results revealed that the MnO2-PAnC electrode displayed the smallest charge transfer resistance and the fastest diffusion rate of surface ions than other two materials of MnO2 and MnO2-C. After 500 cycles of charging and discharging processes, the capacitance retention rate of MnO2-PAnC was still higher than 60%. The MnO2-PAnC is promising as a good electrode material for supercapacitors

References

[1]  Simon P, Gogotsi Y. Materials for electrochemical capacitors[J]. Nature Materials, 2008, 7(11): 845-854.
[2]  Gupta V, Miura N. High performance electrochemical supercapacitor from electrochemically synthesized nanostructured polyaniline[J]. Materials Letters, 2006, 60(12): 1466-1469.
[3]  Luan Q(栾琼), Xue C F(薛春峰), Zhu H Y(祝红叶), et al. Electrochemical synthesis of porous polyaniline electrodes using HKUST-1 as a template and their electrochemical supercapacitor property[J]. Journal of Electrochemistry(电化学), 2017, 23(1): 13-20.
[4]  Sun D M, Wang Z, Huang K, et al. A sandwich-structured porous MnO2/polyaniline/MnO2 thin film for supercapacitor applications [J]. Chemical Physics Letters, 2015, 638, 38-42.
[5]  Murat C, Kakarla R R, Fernando A-M. Advanced electrochemical energy storage supercapacitors based on the flexible carbon fiber fabric-coated with uniform coral-like MnO2 structured electrodes[J]. Journal of Chemical Engineering, 2017, 309: 151-158.
[6]  Xie A, Tao F, Jiang C, et al. A coralliform-structured g-MnO2/polyaniline nanocomposite high-performance supercapacitors[J]. Journal of Electroanalytical Chemistry, 2017, 789: 29-37.
[7]  Ye S B, Feng J C, Wu P Y. Deposition of three-dimensional grapheme aerogel on nickel foam as a binder-free supercapacitorelectrode[J]. ACS Applied Materials Interfaces, 2013, 5(15): 7122-7129.
[8]  Kotz R, Carlen M. Principles and applications of electrochemical capacitors[J]. Electrochimica Acta, 2000, 45(15/16): 2483-2498.
[9]  Wan H(万慧), Ying Z R(应宗荣), Liu X D(刘信东), et al. Preparation and electrochemical properties of attapulgite-supported nitrogen-doped carbon@NiCo2O4 composites for supercapacitors[J]. Journal of Electrochemistry(电化学), 2017, 23(1): 28-35.
[10]  Xu M W, Bao S J, Li H L. Synthesis and characterization of mesoporous nickel oxide for electrochemical capacitor[J]. Journal of Solid State Electrochemistry, 2007, 11(3): 372-377.
[11]  Xin G X, Wang Y H, Zhang J H, et al. A self-supporting graphene/MnO2 composite for high-performance supercapacitors[J]. International Journal of Hydrogen Energy, 2015, 40(32): 10176-10184.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133