全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

Sn掺杂对氧空位型α-Fe2O3纳米颗粒光解水性能的影响
Sn-Doped?α-Fe2O3 Photocatalyst containing Oxygen Vacancy for Water-splitting

DOI: 10.13208/j.electrochem.160412

Keywords: &alpha,-Fe2O3,Sn掺杂,氧空位,表面反应速率,
α-Fe2O3 photocatalyst
,oxygen vacancy,Sn doping,surface reaction rate

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要 在退火前未抽真空条件下,采用滴涂法在常压氮气氛围中退火制备了含氧空位的α-Fe2O3纳米颗粒. 通过在空气和氮气氛围中退火和向前驱体溶液直接加入SnCl4制备α-Fe2O3的方法研究了Sn掺杂对氧空位型α-Fe2O3纳米颗粒光催化性能的影响. 结果表明,氮气氛围中退火Sn掺杂得到的α-Fe2O3在1.23V vs. RHE时的电流密度分别是氮气氛围中退火未掺杂α-Fe2O3的35倍和空气氛围中退火Sn掺杂α-Fe2O3的15倍,氮气氛围中退火和掺杂被证明是获得高催化性能必不可少的条件. Mott-Schottky曲线和交流阻抗谱表明,掺杂和氧空位能增大催化剂的载流子浓度的电导率. 在牺牲剂溶液中测试发现,Sn掺杂导致材料的表面反应速率提高是催化剂活性的重要影响因素.
The α-Fe2O3 nanoparticles containing oxygen vacancies were synthesized in atmospheric N2 by dip-dropping method without a high vacuum employed before annealing. The influences of annealing atmosphere and Sn-doping on the photocatalytic performance of α-Fe2O3 nanoparticles were studied by annealing the photocatalyst in N2 or air and adding SnCl4 to the precursor directly. The results showed that the current density of Sn-doping α-Fe2O3 annealed in N2 at 550 °C and 1.23 V (vs. RHE) was 35 times greater than that of pristine α-Fe2O3 annealed in N2 at 550 °C and 15 times greater than that of Sn-doping α-Fe2O3 annealed in air at 550 °C, which indicated that both Sn-doping and annealing in N2 were indispensible to obtain a good performance for α-Fe2O3 nanoparticles. Mott-Schottky curves and electrochemical impedance spectroscopic data proved that both Sn-doping and oxygen vacancy could lead to the increase of the donors concentration and conductivity, which resulted in the enhanced performance of α-Fe2O3 nanoparticles. The photocatalytic performance tested in the electrolyte containing sacrifice solvent confirmed that the Sn-doping could facilitate the surface reaction, which was another key factor contributed to the enhanced performance of α-Fe2O3 nanoparticles

References

[1]  Su J, Guo L, Bao N, et al. Nanostructured wo3/bivo4 heterojunction films for efficient photoelectrochemical water splitting[J]. Nano Letters, 2011, 11(5): 1928-1933
[2]  Hong S J, Lee S, Jang J S, et al. Heterojunction bivo4/wo3 electrodes for enhanced photoactivity of water oxidation[J]. Energy & Environmental Science, 2011, 4(5): 1781-1787
[3]  Yang J M(杨加明), Han L J(韩玲军), Zhong L P(钟丽萍), et al. Preparation and photocatalytic Properties of ZnO Nanorod Arrays on Ti substrates [J]. Journal of electrochemistry(电化学), 2014, 03): 288-292
[4]  Ling Y, Wang G, Reddy J, et al. The influence of oxygen content on the thermal activation of hematite nanowires[J]. Angewandte Chemie International Edition, 2012, 51(17): 4074-4079
[5]  Brillet J, Gr?tzel M, Sivula K Decoupling feature size and functionality in solution-processed, porous hematite electrodes for solar water splitting[J]. Nano Letters, 2010, 10(10): 4155-4160
[6]  Yang T-Y, Kang H-Y, Sim U, et al. A new hematite photoanode doping strategy for solar water splitting: Oxygen vacancy generation[J]. Physical Chemistry Chemical Physics, 2013, 15(6): 2117-2124
[7]  Morrish R, Rahman M, MacElroy J M D, et al. Activation of hematite nanorod arrays for photoelectrochemical water splitting[J]. ChemSusChem, 2011, 4(4): 474-479
[8]  Ling Y, Wang G, Reddy J, et al. The influence of oxygen content on the thermal activation of hematite nanowires[J]. Angewandte Chemie International Edition, 2012, 51(17): 4074-4079
[9]  Wheeler D A, Wang G, Ling Y, et al. Nanostructured hematite: Synthesis, characterization, charge carrier dynamics, and photoelectrochemical properties[J]. Energy & Environmental Science, 2012, 5(5): 6682-6702
[10]  Wang G, Ling Y, Li Y Oxygen-deficient metal oxide nanostructures for photoelectrochemical water oxidation and other applications[J]. Nanoscale, 2012, 4(21): 6682-6691
[11]  Pu A, Deng J, Li M, et al. Coupling ti-doping and oxygen vacancies in hematite nanostructures for solar water oxidation with high efficiency[J]. Journal of Materials Chemistry A, 2014, 2(8): 2491-2497
[12]  Sivula K, Le?Formal F, Gr?tzel M Solar water splitting: Progress using hematite (α-fe2o3) photoelectrodes[J]. ChemSusChem, 2011, 4(4): 432-449
[13]  Liu J, Liang C, Zhang H, et al. General strategy for doping impurities (ge, si, mn, sn, ti) in hematite nanocrystals[J]. The Journal of Physical Chemistry C, 2012, 116(8): 4986-4992
[14]  Ling Y, Wang G, Wheeler D A, et al. Sn-doped hematite nanostructures for photoelectrochemical water splitting[J]. Nano Letters, 2011, 11(5): 2119-2125
[15]  Gurudayal, Chiam S Y, Kumar M H, et al. Improving the efficiency of hematite nanorods for photoelectrochemical water splitting by doping with manganese[J]. ACS Applied Materials & Interfaces, 2014, 6(8): 5852-5859

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133