|
- 2017
微生物电化学污水处理技术的优势与挑战
|
Abstract:
摘要 微生物电化学技术(Microbial Electrochemical Technology, MET)最为一种新型水处理工艺,因其具有污染物同步去除和能源化的特点受到广泛重视. 近年来微生物电化学系统(Microbial Electrochemical System, MES)的研究者在其电子传递机理、功能菌群分析、系统功能拓展、低成本材料开发和大型系统构建等方面取得大量进展. 然而该技术作为污水处理工艺的可行性却始终存在争议. 本文从应用角度将MET工艺与现有厌氧、好氧工艺进行对比,分析各工艺在有机物降解和能量回收方面的特点,有助于找到MET工艺在水处理领域中的适宜定位. 相对厌氧与好氧工艺,MET工艺具有低污泥产率,运行过程能量自给以及电流加速污染物去除等优势特征,但在推进MET工艺的实用化进程中仍需进一步简化其系统结构、降低构筑成本、提高运行稳定性,并应基于MET的运行特征确定其适宜的应用范围以发挥MET工艺的技术优势
[1] | Ren N Q, (任南琪). Pollution control microbiology (污染控制微生物学)[M]. Harbin Institute of Technology Press (哈尔滨工业大学出版社), 2011:301-303. |
[2] | Li W W, Yu H Q, He Z. Towards sustainable wastewater treatment by using microbial fuel cells-centered technologies[J]. Energy Environ Sci, 2014, 7(3): 911-924. |
[3] | Zhang F, Ge Z, Grimaud J, et al. Long-term performance of liter-scale microbial fuel cells treating primary effluent installed in a municipal wastewater treatment facility[J]. Environmental Science and Technology, 2013, 47(9): 4941-4948. |
[4] | He W, Zhang X, Liu J, et al. Microbial fuel cells with an integrated spacer and separate anode and cathode modules[J]. Environmental Science: Water Research and Technology, 2016, 2: 186-195. |
[5] | McCarty P L, Bae J, Kim J. Domestic wastewater treatment as a net energy producer-can this be achieved?[J]. Environmental Science and Technology, 2011, 45(17): 7100-7106. |
[6] | Hoskins D L, Zhang X, Hickner M A, et al. Spray-on polyvinyl alcohol separators and impact on power production in air-cathode microbial fuel cells with different solution conductivities[J]. Bioresource Technology, 2014, 172C: 156-161. |
[7] | Rodrigo M A, Canizares P, Lobato J, et al. Production of electricity from the treatment of urban waste water using a microbial fuel cell[J]. Journal of Power Sources, 2007, 169(1): 198-204. |
[8] | Penteado E D, Fernandez-Marchante C M, Zaiat M, et al. Energy recovery from winery wastewater using a dual chamber microbial fuel cell[J]. Journal of Chemical Technology and Biotechnology, 2016, 91(6): 1802-1808. |
[9] | Velvizhi G, Mohan S V. Electrogenic activity and electron losses under increasing organic load of recalcitrant pharmaceutical wastewater[J]. International Journal of Hydrogen Energy, 2012, 37(7): 5969-5978. |
[10] | He Z, Minteer S D, Angenent L T. Electricity generation from artificial wastewater using an upflow microbial fuel cell[J]. Environmental Science and Technology, 2005, 39(14): 5262-5267. |
[11] | Stein N E, Hamelers H V, Van S G, et al. Effect of toxic components on microbial fuel cell-polarization curves and estimation of the type of toxic inhibition[J]. Biosensors, 2012, 2(4): 255-268. |
[12] | Liu H, Cheng S A, Logan B E. Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell[J]. Environ Sci Technol 2005, 39(2): 658-662. |
[13] | Feng Y, Xin W, Logan B E, et al. Brewery wastewater treatment using air-cathode microbial fuel cells[J]. Applied Microbiology and Biotechnology, 2008, 78(5): 873-880. |
[14] | Ren L J, Ahn Y, Logan B E. A two-stage microbial fuel cell and anaerobic fluidized bed membrane bioreactor (MFC-afmbr) system for effective domestic wastewater treatment[J]. Environ Sci Technol, 2014, 48(7): 4199-4206. |
[15] | Doherty L, Zhao Y Q, Zhao X H, et al. A review of a recently emerged technology: Constructed wetland - microbial fuel cells[J]. Water Research, 2015, 85: 38-45. |
[16] | Brown R K, Harnisch F, Dockhorn T, et al. Examining sludge production in bioelectrochemical systems treating domestic wastewater[J]. Bioresource Technology, 2015, 198: 913-917. |
[17] | Ren L J, Zhang X Y, He W H, et al. High current densities enable exoelectrogens to outcompete aerobic heterotrophs for substrate[J]. Biotechnology and Bioengineering, 2014, 111(11): 2163-2169. |
[18] | Rozendal R A, Hamelers H V M, Rabaey K, et al. Towards practical implementation of bioelectrochemical wastewater treatment[J]. Trends Biotechnol, 2008, 26(26): 450-459. |
[19] | Cao X, Song H L, Yu C Y, et al. Simultaneous degradation of toxic refractory organic pesticide and bioelectricity generation using a soil microbial fuel cell[J]. Bioresource Technology, 2015, 189: 87-93. |
[20] | Min B, Logan B E. Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell[J]. Environmental Science & Technology, 2004, 38(21): 5809-5814. |
[21] | Lovley D R. Bug juice: Harvesting electricity with microorganisms[J]. Nature Reviews Microbiology, 2006, 4(7): 497-508. |
[22] | Jacobson K S, Drew D M, He Z. Efficient salt removal in a continuously operated upflow microbial desalination cell with an air cathode[J]. Bioresource Technology, 2011, 102(1): 376-380. |
[23] | Virdis B, Rabaey K, Rozendal R A, et al. Simultaneous nitrification, denitrification and carbon removal in microbial fuel cells[J]. Water Research, 2010, 44(9): 2970-2980. |
[24] | Schr?der U. Discover the possibilities: Microbial bioelectrochemical systems and the revival of a 100-year-old discovery[J]. Journal of Solid State Electrochemistry, 2011, 15(7-8): 1481-1486. |
[25] | Sonawane J M, Gupta A, Ghosh P C. Multi-electrode microbial fuel cell (memfc): A close analysis towards large scale system architecture[J]. International Journal of Hydrogen Energy, 2013, 38(12): 5106-5114. |
[26] | Fan Y. Improved performance of cea microbial fuel cells with increased reactor size[J]. Energy and Environmental Science, 2012, 5(8): 8273-8280. |
[27] | Feng Y, He W, Jia L, et al. A horizontal plug flow and stackable pilot microbial fuel cell for municipal wastewater treatment[J]. Bioresource Technology, 2014, 156(2): 132-138. |
[28] | Ge Z, Wu L, Zhang F, et al. Energy extraction from a large-scale microbial fuel cell system treating municipal wastewater[J]. Journal of Power Sources, 2015, 297: 260-264. |
[29] | Zhang X Y, Cheng S O, Xin W, et al. Separator characteristics for increasing performance of microbial fuel cells[J]. Environmental Science and Technology, 2009, 43(21): 8456-8461. |
[30] | Ahn Y, Hatzell M C, Zhang F, et al. Different electrode configurations to optimize performance of multi-electrode microbial fuel cells for generating power or treating domestic wastewater[J]. Journal of Power Sources, 2014, 249: 440-445. |
[31] | An B M, Heo Y, Maitlo H A, et al. Scaled-up dual anode/cathode microbial fuel cell stack for actual ethanolamine wastewater treatment[J]. Bioresource Technology, 2016, 210: 68-73. |
[32] | Wu S, Li H, Zhou X, et al. A novel pilot-scale stacked microbial fuel cell for efficient electricity generation and wastewater treatment[J]. Water Research, 2016, 98: |
[33] | Yu J, Seon J, Park Y, et al. Electricity generation and microbial community in a submerged-exchangeable microbial fuel cell system for low-strength domestic wastewater treatment[J]. Bioresource Technology, 2012, 117: 172-179. |
[34] | Miyahara M, Hashimoto K, Watanabe K. Use of cassette-electrode microbial fuel cell for wastewater treatment[J]. Journal of Bioscience & Bioengineering, 2012, 115(2): 176-181. |
[35] | Canfield J, Goldner B, Lutwack R. Utilization of human wastes as electrochemical fuels[J]. NASA Technical Report, Magna Corporation, Anaheim CA p, 1963, 63: 615-616. |
[36] | Kim H J, Park H S, Hyun M S, et al. A mediator-less microbial fuel cell using a metal reducing bacterium, shewanella putrefaciense[J]. Enzyme and Microbial Technology, 2002, 30(2): 145-152. |
[37] | Bruce L, Shaoan C, Valerie W, et al. Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells[J]. Environmental Science & Technology, 2007, 41(9): 3341-3346. |
[38] | Li D, Liu J, Qu Y, et al. Analysis of the effect of biofouling distribution on electricity output in microbial fuel cells[J]. Rsc Advances, 2016, 6(33): 27494-27500. |
[39] | Yang W, Watson V J, Logan B E. Substantial humic acid adsorption to activated carbon air cathodes produces a small reduction in catalytic activity[J]. Environmental Science and Technology, 2016, 50(16): |
[40] | Feng Y, Shi X, Wang X, et al. Effects of sulfide on microbial fuel cells with platinum and nitrogen-doped carbon powder cathodes[J]. Biosensors and Bioelectronics, 2012, 35(1): 413-415. |
[41] | Dong H, Yu H, Wang X, et al. A novel structure of scalable air-cathode without nafion and pt by rolling activated carbon and PTFE as catalyst layer in microbial fuel cells[J]. Water Research, 2012, 46(17): 5777-5787. |
[42] | Cheng S, Ye Y, Ding W, et al. Enhancing power generation of scale-up microbial fuel cells by optimizing the leading-out terminal of anode[J]. Journal of Power Sources, 2014, 248(7): 931-938. |
[43] | Zhang L, Zhu X, Li J, et al. Biofilm formation and electricity generation of a microbial fuel cell started up under different external resistances[J]. Journal of Power Sources, 2011, 196(15): 6029-6035. |
[44] | Feng Y J, Lee H, Wang X, et al. Continuous electricity generation by a graphite granule baffled air-cathode microbial fuel cell[J]. Bioresource Technology, 2010, 101(2): 632-638. |
[45] | Zhang X, Pant D, Zhang F, et al. Long-term performance of chemically and physically modified activated carbons in air cathodes of microbial fuel cells[J]. Chemelectrochem, 2014, 1(1): 1859-1866. |
[46] | Zhang F, Pant D, Logan B E. Long-term performance of activated carbon air cathodes with different diffusion layer porosities in microbial fuel cells[J]. Biosensors and Bioelectronics, 2011, 30(1): 49-55. |
[47] | Cetinkaya A Y, Ozdemir O K, Demir A, et al. Electricity production and characterization of high-strength industrial wastewaters in microbial fuel cell[J]. Applied Biochemistry & Biotechnology, 2016: 1-14. |
[48] | Oh S, Min B, Logan B E. Cathode performance as a factor in electricity generation in microbial fuel cells[J]. Environmental Science and Technology, 2004, 38(18): 4900-4904. |
[49] | You S J, Wang J Y, Ren N Q, et al. Sustainable conversion of glucose into hydrogen peroxide in a solid polymer electrolyte microbial fuel cell[J]. ChemSusChem, 2010, 3(3): 334-338. |
[50] | Ha P T, Tae B, Chang I S. Performance and bacterial consortium of microbial fuel cell fed with formate?[J]. Energy & Fuels, 2008, 22(1): 164-168. |
[51] | Z R, LM S, JM R. Electricity production and microbial biofilm characterization in cellulose-fed microbial fuel cells[J]. Water Science & Technology A Journal of the International Association on Water Pollution Research, 2008, 58(3): 617-622. |
[52] | Niessen J, Schr?der U, Scholz F. Exploiting complex carbohydrates for microbial electricity generation - a bacterial fuel cell operating on starch[J]. Electrochemistry Communications, 2004, 6(9): 955-958. |
[53] | Wang L, Liu Y, Ma J, et al. Rapid degradation of sulphamethoxazole and the further transformation of 3-amino-5-methylisoxazole in a microbial fuel cell[J]. Water Research, 2016, 88(4): 322-328. |
[54] | Daw J, Hallett K, DeWolfe J, et al. Energy efficiency strategies for municipal wastewater treatment facilities[J]. Contract, 2012, 303: 275-3000. |
[55] | Wang H M, Ren Z Y J. A comprehensive review of microbial electrochemical systems as a platform technology[J]. Biotechnology Advances, 2013, 31(8): 1796-1807. |
[56] | Potter M C. Electrical effects accompanying the decomposition of organic compounds[J]. Proceedings of the Royal Society of London Series B, Containing Papers of a Biological Character, 1911, 84(571): 260-276. |
[57] | Zhang F, Cheng S, Pant D. Power generation using an activated carbon and metal mesh cathode in a microbial fuel cell[J]. Electrochemistry Communications, 2009, 11(11): 2177-2179. |
[58] | Xie X, Criddle C, Cui Y. Design and fabrication of bioelectrodes for microbial bioelectrochemical systems[J]. Energy & Environmental Science, 2015, 8(12): 94-113. |
[59] | Hosomi M. New challenges on wastewater treatment[J]. Clean Technologies & Environmental Policy, 2016: 1-2. |
[60] | Shizas I, Bagley D M. Experimental determination of energy content of unknown organics in municipal wastewater streams[J]. J Energ Eng, 2004, 130(2): 45-53. |
[61] | Gao X (高旭), Ma S (马蜀), Guo J S (郭劲松), et al. Determination of the calorific value of wastewater and sludge from a municipal wastewater treatment plant (城市污水厂污水污泥的热值测定分析方法研究)[J]. Chinese Journal of Environmental Engineering (环境工程学报), 2009, 3(11): 1938-1942. |
[62] | Gen S S (耿土锁). Treatment of brewery wastewater by UASB- aerobic contact oxidation process (UASB-好氧接触氧化工艺处理啤酒废水)[J]. China Water and Wastewater (中国给水排水), 2002, 18(10): 71-72. |
[63] | Dong Y, Feng Y, Qu Y, et al. A combined system of microbial fuel cell and intermittently aerated biological filter for energy self-sufficient wastewater treatment[J]. Scientific Reports, 2015, 5: |
[64] | Feng Y, Yang Q, Wang X, et al. Treatment of carbon fiber brush anodes for improving power generation in air-cathode microbial fuel cells[J]. Journal of Power Sources, 2010, 195(7): 1841-1844. |
[65] | Kiely P D, Rader G, Regan J M, et al. Long-term cathode performance and the microbial communities that develop in microbial fuel cells fed different fermentation endproducts[J]. Bioresource Technology, 2011, 102(1): 361-366. |
[66] | Li Z, Yong Y, Wang Y, et al. Long-term evaluation of a 10-liter serpentine-type microbial fuel cell stack treating brewery wastewater[J]. Bioresource Technology, 2012, 123(2): 406-412. |
[67] | Zhang B G, Zhao H Z, Zhou S G, et al. A novel UASB-MFC-BAF integrated system for high strength molasses wastewater treatment and bioelectricity generation[J]. Bioresource Technology, 2009, 100(23): 5687-5693. |
[68] | Wang H, Qu Y, Li D, et al. Cascade degradation of organic matters in brewery wastewater using a continuous stirred microbial electrochemical reactor and analysis of microbial communities[J]. Scientific Reports, 2016, 6: 27023. |
[69] | Corbella C, Guivernau M, Vi?as M, et al. Operational, design and microbial aspects related to power production with microbial fuel cells implemented in constructed wetlands[J]. Water Research, 2015, 84: 232-242. |
[70] | Chang I, Moonsik H, Byunghong K, et al. An electrochemical method for enrichment of microorganism, a biosensor for analyzing organic substance and bod[J]. 2002: |
[71] | Liu H, Logan B E. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane[J]. Environmental Science and Technology, 2004, 38(14): 4040-4046. |
[72] | Zhang X, He W, Zhang R, et al. High‐performance carbon aerogel air cathodes for microbial fuel cells[J]. Chemsuschem, 2016, 9(19): 2788-2795. |
[73] | Li X, Hu B, Suib S, et al. Manganese dioxide as a new cathode catalyst in microbial fuel cells[J]. Journal of Power Sources, 2010, 195(9): 2586-2591. |
[74] | Water and Energy: Leveraging Voluntary Programs to Save Both Water and Energy, Environmental Protection Agency 2008. |
[75] | Gu Z, (顾震宇), Kuang W (况武). Application of UASB technology in the transformation of brewery wastewater treatment (UASB技术在啤酒废水处理改造中的应用)[J]. Energy Engineering (能源工程), 2009, (6): 45-48. |
[76] | Zhang X Y, He W H, Ren L J, et al. COD removal characteristics in air-cathode microbial fuel cells[J]. Bioresource Technology, 2015, 176: 23-31. |
[77] | Dong Y, Qu Y P, He W H, et al. A 90-liter stackable baffled microbial fuel cell for brewery wastewater treatment based on energy self-sufficient mode[J]. Bioresource Technology, 2015, 195: 66-72. |
[78] | Bond D R, Lovley D R. Electricity production by geobacter sulfurreducens attached to electrodes[J]. Applied and Environmental Microbiology, 2003, 69(3): 1548-1555. |
[79] | Bond D R, Holmes D E, Tender L M, et al. Electrode-reducing microorganisms that harvest energy from marine sediments[J]. Science, 2002, 295(295): 483-485. |
[80] | Freguia S, Rabaey K, Yuan Z G, et al. Syntrophic processes drive the conversion of glucose in microbial fuel cell anodes[J]. Environmental Science and Technology, 2008, 42(21): 7937-7943. |
[81] | He W, Wallack M J, Kim K-Y, et al. The effect of flow modes and electrode combinations on the performance of a multiple module microbial fuel cell installed at wastewater treatment plant[J]. Water Research, 2016, 105(2016): 351-360. |
[82] | Caccavo F, Lonergan D J, Lovley D R, et al. Geobacter sulfurreducens sp. Nov., a hydrogen- and acetate-oxidizing dissimilatory metal-reducing microorganism[J]. Applied & Environmental Microbiology, 1994, 60(10): 3752-3759. |
[83] | Li H, (李贺). Construction and electrogenic characteristics of a baffled tubular air-cathode microbial fuel cell (折流板管状空气阴极微生物燃料电池构建及产电特性研究)[D] 哈尔滨工业大学, 2010: |
[84] | Villase, ntilde, or J, et al. Operation of a horizontal subsurface flow constructed wetland – microbial fuel cell treating wastewater under different organic loading rates[J]. Water research, 2013: |
[85] | Cheng S, Liu H, Logan B E. Increased performance of single-chamber microbial fuel cells using an improved cathode structure[J]. Electrochemistry Communications, 2006, 8(3): 489-494. |
[86] | Kim J R, Premier G C, Hawkes F R, et al. Development of a tubular microbial fuel cell (MFC) employing a membrane electrode assembly cathode[J]. Journal of Power Sources, 2009, 187(2): 393-399. |
[87] | Zhuang L, Zhou S G, Wang Y Q, et al. Membrane-less cloth cathode assembly (cca) for scalable microbial fuel cells[J]. Biosensors and Bioelectronics, 2009, 24(12): 3652-3656. |
[88] | Janicek A, Fan Y Z, Hong L. Design of microbial fuel cells for practical application: A review and analysis of scale-up studies[J]. Biofuels, 2014, 5(1): 79-92. |
[89] | Wang B, Han J I. A single chamber stackable microbial fuel cell with air cathode[J]. Biotechnology Letters, 2009, 31(3): 387-393. |
[90] | Shimoyama T, Komukai S, Yamazawa A, et al. Electricity generation from model organic wastewater in a cassette-electrode microbial fuel cell[J]. Applied and Environmental Microbiology, 2008, 80(2): 325-330. |
[91] | Rezaei F, Xing D, Wagner R, et al. Simultaneous cellulose degradation and electricity production by enterobacter cloacae in a microbial fuel cell[J]. Applied & Environmental Microbiology, 2009, 75(11): 3673-3678. |