|
- 2017
Nafion含量与阴离子吸附对于铂单原子层核壳结构催化剂制备的影响
|
Abstract:
摘要 本实验利用铜的欠电位沉积技术,在旋转圆盘电极上以碳负载的钯纳米颗粒为核,制备铂单原子层核壳结构催化剂. 电化学测试用于表征不同Nafion含量的添加对于核壳结构催化剂制备的影响. 实验证明,Nafion的存在会影响铜的欠电位沉积,铂与铜的置换反应,并决定最终制备的核壳结构催化剂的氧还原催化反应的活性. 当催化剂薄层中Nafion的含量低于5%的时候,添加Nafion不但可以帮助催化剂附着在旋转圆盘电极表面,而且可以保证制备的催化剂具有较好的氧还原反应催化活性. 在H2SO4溶液中,钯纳米颗粒的表面存在特殊的阴离子吸/脱附电化学信号峰,这些信号峰可以用来监测Nafion含量对于铂单原子层核壳结构催化剂制备的影响.
Carbon supported palladium (Pd) nanoparticles were used as a model core material for the synthesis of platinum (Pt) monolayer core-shell catalysts using rotating disk electrode method and a copper (Cu) under potential deposition technique. The impact of Nafion on the synthesis process was revealed by electrochemical testing with various Nafion contents. The existence of Nafion influenced the Cu under potential deposition, galvanic replacement and eventually the oxygen reduction reaction activity of the core-shell catalyst. However, as long as the Nafion content was less than 5 wt% in the test film, adding Nafion could help to bind catalyst onto the surface of electrode while maintaining promising catalytic activity. Unique anion adsorption/desorption peaks were observed on the surface of Pd in H2SO4 solution, which turned out to be a useful indicator to evaluate the impact of Nafion on the synthesis of the core-shell catalysts
[1] | Oezaslan, M., Hasche, F.,Strasser, P., Pt-Based Core-Shell Catalyst Architectures for Oxygen Fuel Cell Electrodes [J]. Journal of Physical Chemistry Letters, 2013, 4 (19): 3273-3291. |
[2] | Zhao, Z. L., Zhang, L. Y., Bao, S. J., et al., One-pot synthesis of small and uniform Au@PtCu core-alloy shell nanoparticles as an efficient electrocatalyst for direct methanol fuel cells [J]. Applied Catalysis B: Environmental, 2015, 174-175: 361-366. |
[3] | Cai, Y.,Adzic, R. R., Platinum Monolayer Electrocatalysts for the Oxygen Reduction Reaction: Improvements Induced by Surface and Subsurface Modifications of Cores [J]. Advances in Physical Chemistry, 2011, 2011: 16. |
[4] | Shinozaki, K., Zack, J. W., Pylypenko, S., et al., Oxygen Reduction Reaction Measurements on Platinum Electrocatalysts Utilizing Rotating Disk Electrode Technique [J]. Journal of the Electrochemical Society, 2015, 162 (12): F1384-F1396. |
[5] | Zhu, S., Hu, X., Zhang, L., et al., Impacts of Perchloric Acid, Nafion and Alkali Metal Ions on Oxygen Reduction Reaction Kinetics in Acidic and Alkaline Solutions [J]. The Journal of Physical Chemistry C, 2016. |
[6] | álvarez, B., Climent, V., Rodes, A., et al., Anion adsorption on Pd-Pt(111) electrodes in sulphuric acid solution [J]. Journal of Electroanalytical Chemistry, 2001, 497 (1-2): 125-138. |
[7] | Vukmirovic, M. B., Bliznakov, S. T., Sasaki, K., et al., Electrodeposition of Metals in Catalyst Synthesis: The Case of Platinum Monolayer Electrocatalysts [J]. The Electrochemical Society Interface, 2011, 20 (2): 33-40. |
[8] | Sasaki, K., Naohara, H., Choi, Y. M., et al., Highly stable Pt monolayer on PdAu nanoparticle electrocatalysts for the oxygen reduction reaction [J]. Nature Communications, 2012, 3. |
[9] | Hara, M., Linke, U.,Wandlowski, T., Preparation and electrochemical characterization of palladium single crystal electrodes in 0.1 M H2SO4 and HClO4 part I. Low-index phases [J]. Electrochimica Acta, 2007, 52 (18): 5733-5748. |
[10] | Hoshi, N., Kagaya, K.,Hori, Y., Voltammograms of the single-crystal electrodes of palladium in aqueous sulfuric acid electrolyte: Pd(S)-[n(111)×(111)] and Pd(S)-[n(100)×(111)] [J]. Journal of Electroanalytical Chemistry, 2000, 485 (1): 55-60. |
[11] | Alvarez, B., Climent, V., Rodes, A., et al., Potential of zero total charge of palladium modified Pt(111) electrodes in perchloric acid solutions [J]. Physical Chemistry Chemical Physics, 2001, 3 (16): 3269-3276. |
[12] | Lenz, P.,Solomun, T., Underpotential deposition of copper on Pd(100): An electron spectroscopy study [J]. Journal of Electroanalytical Chemistry, 1993, 353 (1): 131-145. |
[13] | Ahmed, M., Attard, G. A., Wright, E., et al., Methanol and formic acid electrooxidation on nafion modified Pd/Pt{1 1 1}: The role of anion specific adsorption in electrocatalytic activity [J]. Catalysis Today, 2013, 202: 128-134. |
[14] | Kumar, A.,Buttry, D. A., Size-Dependent Underpotential Deposition of Copper on Palladium Nanoparticles [J]. The Journal of Physical Chemistry C, 2015, 119 (29): 16927-16933. |
[15] | Wang, J. X., Inada, H., Wu, L. J., et al., Oxygen Reduction on Well-Defined Core-Shell Nanocatalysts: Particle Size, Facet, and Pt Shell Thickness Effects [J]. Journal of the American Chemical Society, 2009, 131 (47): 17298-17302. |
[16] | Markovic, N. M., Gasteiger, H. A.,Ross, P. N., Oxygen Reduction on Platinum Low-Index Single Crystal Surfaces in Sulfuric Acid Solution -Rotating ring Pt(hkl) disk studies [J]. Journal of Physical Chemistry, 1995, 99 (11): 3411-3415. |
[17] | Wang, Y. J., Zhao, N. N., Fang, B. Z., et al., Carbon-Supported Pt-Based Alloy Electrocatalysts for the Oxygen Reduction Reaction in Polymer Electrolyte Membrane Fuel Cells: Particle Size, Shape, and Composition Manipulation and Their Impact to Activity [J]. Chemical Reviews, 2015, 115 (9): 3433-3467. |
[18] | Wang, X., Choi, S. I., Roling, L. T., et al., Palladium-platinum core-shell icosahedra with substantially enhanced activity and durability towards oxygen reduction [J]. Nature Communications, 2015, 6. |
[19] | Okada, J., Inukai, J.,Itaya, K., Underpotential and bulk deposition of copper on Pd(111) in sulfuric acid solution studied by in situ scanning tunneling microscopy [J]. Physical Chemistry Chemical Physics, 2001, 3 (16): 3297-3302. |
[20] | Chierchie, T.,Mayer, C., Voltammetric study of the underpotential deposition of copper on polycrystalline and single crystal palladium surfaces [J]. Electrochimica Acta, 1988, 33 (3): 341-345. |
[21] | Park, J. H., Zhou, H. J., Percival, S. J., et al., Open Circuit (Mixed) Potential Changes Upon Contact Between Different Inert Electrodes-Size and Kinetic Effects [J]. Analytical Chemistry, 2013, 85 (2): 964-970. |
[22] | Gasteiger, H. A., Kocha, S. S., Sompalli, B., et al., Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs [J]. Applied Catalysis B: Environmental, 2005, 56 (1-2): 9-35. |
[23] | Shao, M. H., Chang, Q. W., Dodelet, J. P., et al., Recent Advances in Electrocatalysts for Oxygen Reduction Reaction [J]. Chemical Reviews, 2016, 116 (6): 3594-3657. |
[24] | Zhang, J.,Li, C. M., Nanoporous metals: fabrication strategies and advanced electrochemical applications in catalysis, sensing and energy systems [J]. Chemical Society Reviews, 2012, 41 (21): 7016-7031. |
[25] | Hu, J., Wu, L. J., Kuttiyiel, K. A., et al., Increasing Stability and Activity of Core-Shell Catalysts by Preferential Segregation of Oxide on Edges and Vertexes: Oxygen Reduction on Ti-Au@Pt/C [J]. Journal of the American Chemical Society, 2016, 138 (29): 9294-9300. |
[26] | Zhang, L., Zhu, S., Chang, Q., et al., Palladium-Platinum Core-Shell Electrocatalysts for Oxygen Reduction Reaction Prepared with the Assistance of Citric Acid [J]. ACS Catalysis, 2016, 6 (6): 3428-3432. |
[27] | Yang, L. J., Vukmirovic, M. B., Su, D., et al., Tuning the Catalytic Activity of Ru@Pt Core-Shell Nanoparticles for the Oxygen Reduction Reaction by Varying the Shell Thickness [J]. Journal of Physical Chemistry C, 2013, 117 (4): 1748-1753. |
[28] | Yang, L. J. (杨莉君). Preparation and Investigation of Core-shell structured Pt Monolayer Catalysts and Carbon based non-Pt catalysts [C]. Guangzhou: South China University of Technology, 2013. |
[29] | Hoshi, N., Kuroda, M., Koga, O., et al., Infrared Reflection Absorption Spectroscopy of the Sulfuric Acid Anion on Low and High Index Planes of Palladium [J]. The Journal of Physical Chemistry B, 2002, 106 (35): 9107-9113. |
[30] | Schmidt, T. J., Markovic, N. M., Stamenkovic, V., et al., Surface characterization and electrochemical behavior of well-defined Pt-Pd{111} single-crystal surfaces: A comparative study using Pt{111} and palladium-modified Pt{111} electrodes [J]. Langmuir, 2002, 18 (18): 6969-6975. |