|
- 2018
水助催化氢分子在金纳米粒子上解离的理论研究
|
Abstract:
摘要 金纳米粒子(GNPs)对氢分子(H2)的解离具有良好的催化活性. 本文研究了水分子对 GNPs 催化 H2 解离的影响. 对于H2在中性和带正电的金簇(Aunδ,n=3~5;δ = 0,1)上的反应,考虑当水簇((H2O)m,m = 1, 2, 3, 7)参与反应时 GNPs 催化H2的解离过程的热力学和动力学. 研究结果表明,水对 H2 在GNPs上的解离有助催化的作用,且水簇大小不同,水助催化 H2 在金簇上解离的机理也有所不同,其由氢氢键的均裂解离转化为氧化解离. 对两种机理所得的产物,作者计算了它们的 Raman 和 IR 光谱
[1] | Gao M, Lyalin A, Takagi M, et al. Reactivity of gold clusters in the regime of structural fluxionality[J]. Journal of Physical Chemistry C, 2015, 119(20): 11120-11130. |
[2] | Ghebriel H W, Kshirsagar A. Adsorption of molecular hydrogen and hydrogen sulfide on Au clusters[J]. The Journal of Chemical Physics, 2007, 126(24): 244705. |
[3] | Sun K, Kohyama M, Tanaka S, et al. A study on the mechanism for H2 dissociation on Au/TiO2 catalysts[J]. The Journal of Physical Chemistry C, 2014, 118(3): 1611-1617. |
[4] | Boccuzzi F, Chiorino A, Manzoli M, et al. FTIR study of the low-temperature water-gas shift reaction on Au/Fe2O3 and Au/TiO2 catalysts[J]. Journal of Catalysis, 1999, 188(1): 176-185. |
[5] | Gilb S, Weis P, Furche F, et al. Structures of small gold cluster cations (Aun+, n < 14): Ion mobility measurements versus density functional calculations[J]. The Journal of Chemical Physics, 2002, 116(10): 4094-4101. |
[6] | Fukui K. The path of chemical reactions - the IRC approach[J]. Accounts of Chemical Research, 1981, 14(12): 363-368. |
[7] | Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 09, revision D. 01[M]. Wallingford, CT; Gaussian, Inc., Wallingford CT. 2009. |
[8] | Mukherjee S, Libisch F, Large N, et al. Hot electrons do the impossible: Plasmon-induced dissociation of H2 on Au[J]. Nano Letter, 2013, 13(1): 240-247. |
[9] | Mukherjee S, Zhou L, Goodman A M, et al. Hot-electron-induced dissociation of H2 on gold nanoparticles supported on SiO2[J]. Journal of the American Chemical Society, 2014, 136(1): 64-67. |
[10] | Corma A, Boronat M, Gonzalez S, et al. On the activation of molecular hydrogen by gold: a theoretical approximation to the nature of potential active sites[J]. Chemical Communications, 2007, 32(32): 3371-3373. |
[11] | Determan J J, Moncho S, Brothers E N, et al. Simulating periodic trends in the structure and catalytic activity of coinage metal nanoribbons [J]. International Journal of Quantum Chemistry, 2015, 115(24): 1718-1725. |
[12] | Mavrikakis M, Stoltze P, Norskov J K. Making gold less noble[J]. Catalysis Letters, 2000, 64(2/4): 101-106. |
[13] | Kang G J, Chen Z X, Li Z, et al. A theoretical study of the effects of the charge state and size of gold clusters on the adsorption and dissociation of H2[J]. The Journal of Chemical Physics, 2009, 130(3): 034701. |
[14] | Dorta-Urra A, Zanchet A, Roncero O, et al. A comparative study of the Au + H2, Au+ + H2, and Au- + H2 systems: Potential energy surfaces and dynamics of reactive collisions[J]. The Journal of Chemical Physics, 2015, 142(15): 154301. |
[15] | Hammer B, Norskov J K.Why gold is the noblest of all themetals[J].Nature,1995,376(6537):238-240. |
[16] | Harris J, Andersson S,Holmberg C,et al.The interactionof H2 with metal-surface[J].Physica Scripta,1986,T13:155-160. |
[17] | Lee C T, Yang W T, Parr R G. Development of the collesalvetti correlation-energy formula into a functional of the electron-density[J]. Physical review B, 1988, 37(2): 785-789. |
[18] | Zanchet A, Dorta-Urra A, Aguado A, et al. Understanding structure, size, and charge effects for the H2 dissociation mechanism on planar gold clusters[J]. Journal of Physical Chemistry C, 2011, 115(1): 47-57. |
[19] | Kuang X J, Wang X Q, Liu G B. A comparative study between all-electron scalar relativistic calculation and all-electron calculation on the adsorption of hydrogen molecule onto small gold clusters[J]. Journal of Chemistry Sciences, 2013, 125(2): 401-411. |
[20] | Jiang Y X, Li J F, Wu D Y, et al. Characterization of surface water on Au core Pt-group metal shell nanoparticles coated electrodes by surface-enhanced Raman spectroscopy[J]. Chemical Communications, 2007, 44: 4608-4610. |
[21] | Stobinski L, Zommer L, Dus R. Molecular hydrogen interactions with discontinuous and continuous thin gold films[J]. Applied Surface Science, 1999, 141(3/4): 319-325. |
[22] | Fujitani T, Nakamura I, Akita T, et al. Hydrogen dissociation by gold clusters[J]. Angewandte Chemie International Edition, 2009, 48(50): 9515-9518. |
[23] | Santos E, Quaino P, Schmickler W. Theory of electrocatalysis: Hydrogen evolution and more[J]. Physical Chemistry Chemistry Physics, 2012, 14(32): 11224-11233. |
[24] | Santos E, Hindelang P, Quaino P, et al. Hydrogen electrocatalysis on single crystals and on nanostructured electrodes[J]. ChemPhysChem, 2011, 12(12): 2274-2279. |
[25] | Kuang X J, Wang X Q, Liu G B. All-electron scalar relativistic calculation of water molecule adsorption onto small gold clusters[J]. Journal of Molecular Modeling, 2011, 17(8): 2005-2016. |
[26] | Sugawara K, Sobott F, Vakhtin A B. Reactions of goldcluster cations Aun+(n=1-12) with H2S and H2[J]. The Journal of Chemical Physics, 2003, 118(17): 7808-7816. |
[27] | Becke A D. Density-functional thermochemistry.3. the role of exact echange[J]. The Journal of Chemical Physics, 1993, 98(7): 5648-5652. |
[28] | Hay P J, Wadt W R. Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms scandium to mercury[J]. The Journal of Chemical Physics, 1985, 82(1): 270-283. |
[29] | Fang Z, Kuang X. Hydrogen molecule adsorption on AunPt (n = 1-12) clusters in comparison with corresponding pure Aun+1 (n = 1-12) clusters[J]. Physica Status Solidi B, 2014, 251(2): 446-454. |
[30] | Buceta D, Blanco M C, Lopez-Quintela M A, et al. Critical size range of sub-nanometer Au clusters for the catalytic activity in the hydrogen oxidation reaction[J]. Journal of the Electrochemical Society, 2014, 161(7): D3113-D3115. |
[31] | Brust M, Gordillo G J. Electrocatalytic hydrogen redox chemistry on gold nanoparticles[J]. Journal of the American Chemical Society, 2012, 134(7): 3318-3321. |
[32] | Dunning T H. Gaussian basis sets for use in correlated molecular calculations. 1. The atoms boron through neon and hydrogen[J]. The Journal of Chemical Physics, 1989, 90(2): 1007-1023. |
[33] | Lang S M, Bernhardt T M, Barnett R N, et al. Hydrogen-promoted oxygen activation by free gold cluster cations[J]. Journal of the American Chemical Society, 2009, 131(25): 8939-8951. |
[34] | Varganov S A, Olson R M, Gordon M S, et al. A study of the reactions of molecular hydrogen with small gold clusters[J]. The Journal of Chemical Physics, 2004, 120(11): 5169-5175. |
[35] | Cox D M, Brickman R, Creegan K, et al. Gold clusters-reactions and deuterium uptake[J]. Zeitschrift fürPhysik D Atoms, Molecules and Clusters, 1991, 19(4): 353-355. |
[36] | Pang R, Yu L J, Zhang M, et al. DFT study of hydrogen-bonding interaction, solvation effect, and electric-field effect on raman spectra of hydrated proton[J]. Journal of Physical Chemistry A, 2016, 120(42): 8273-8284. |