全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 

卟啉及其光电化学研究进展
Prospects of D-π-A structured porphyrins and their photoelectrochemical application

DOI: 10.13208/j.electrochem.160143

Keywords: 卟啉,太阳能电池,光解水,光电化学,
porphyrin
,solar cell,water splitting,photochemistry

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要 卟啉及金属卟啉在自然界中广泛存在,其光学、电化学等特性可通过分子结构中多个反应位点进行调控. 随着全球能源环境问题日益凸显,卟啉在太阳能电池、光催化制氢领域的研究成为热点. 本文简介了作者课题组近年来通过国内外合作开展的D-π-A结构卟啉分子结构改性及其对光电化学性质和器件光伏特性影响的进展,并对未来卟啉光电化学研究的发展进行了简要的探讨.
Porphyrins and their metalloderivatives are a class of compounds exhibiting a wide variety of interesting and highly useful properties, such as chlorophyll. Porphyrins are particularly interesting in photoelectrochemical applications due to their structural similarity to chlorophylls in natural photosynthetic systems, as well as their strong and tunable absorption properties. Recently, various porphyrins have been extensively studied for their applications in solar cells, photocatalytic hydrogen production, optical information storage and others. This review will focus on the unique physical and chemical properties of D-π-A structured porphyrins, and their photovoltaic performances in dye-sensitized solar cells. A brief discussion in the future development of porphyrins is presented

References

[1]  Lu J, Zhang B, Liu S, et al. A cyclopenta [1, 2-b: 5, 4-b′] dithiophene–porphyrin conjugate for mesoscopic solar cells: a D-π-D-A approach[J]. Physical Chemistry Chemical Physics, 2014, 16(45): 24755-24762.
[2]  Hardin B E, Snaith H J, McGehee M D. The renaissance of dye-sensitized solar cells[J]. Nature Photonics, 2012, 6(3): 162-169.
[3]  Lu J, Liu S, Shen Y, et al. Alkyl-thiophene Functionalized D-π-A Porphyrins for Mesoscopic Solar Cells[J]. Electrochimica Acta, 2015.
[4]  Graetzel M. Artificial photosynthesis: water cleavage into hydrogen and oxygen by visible light[J]. Accounts of Chemical Research, 1981, 14(12): 376-384.
[5]  Huang D, Lu J, Li S, et al. Fabrication of Cobalt Porphyrin Electrochemically Reduced Graphene Oxide Hybrid Films for Electrocatalytic Hydrogen Evolution in Aqueous Solution[J]. Langmuir, 2014, 30(23): 6990-6998.
[6]  Kay A, Graetzel M. Artificial photosynthesis. 1. Photosensitization of titania solar cells with chlorophyll derivatives and related natural porphyrins[J]. The Journal of Physical Chemistry, 1993, 97(23): 6272-6277.
[7]  Wang Q, Campbell W M, Bonfantani E E, et al. Efficient light harvesting by using green Zn-porphyrin-sensitized nanocrystalline TiO2 films[J]. The Journal of Physical Chemistry B, 2005, 109(32): 15397-15409.
[8]  Yella A, Lee H W, Tsao H N, et al. Porphyrin-sensitized solar cells with cobalt (II/III)–based redox electrolyte exceed 12 percent efficiency[J]. science, 2011, 334(6056): 629-634.
[9]  Imahori H, Umeyama T, Ito S. Large π-aromatic molecules as potential sensitizers for highly efficient dye-sensitized solar cells[J]. Accounts of Chemical Research, 2009, 42(11): 1809-1818.
[10]  Urbani M, Gra?tzel M, Nazeeruddin M K, et al. Meso-Substituted Porphyrins for Dye-Sensitized Solar Cells[J]. Chemical reviews, 2014, 114(24): 12330-12396.
[11]  Lu J, Xu X, Cao K, et al. D–π–A structured porphyrins for efficient dye-sensitized solar cells[J]. Journal of Materials Chemistry A, 2013, 1(34): 10008-10015.
[12]  Hao S, Wu J, Fan L, et al. The influence of acid treatment of TiO 2 porous film electrode on photoelectric performance of dye-sensitized solar cell[J]. Solar Energy, 2004, 76(6): 745-750.
[13]  Jacques P A, Artero V, Pécaut J, et al. Cobalt and nickel diimine-dioxime complexes as molecular electrocatalysts for hydrogen evolution with low overvoltages[J]. Proceedings of the National Academy of Sciences, 2009, 106(49): 20627-20632.
[14]  Mathew S, Yella A, Gao P, et al. Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers[J]. Nature chemistry, 2014, 6(3): 242-247.
[15]  López‐Duarte I, Wang M, Humphry‐Baker R, et al. Molecular engineering of zinc phthalocyanines with phosphinic acid anchoring groups[J]. Angewandte Chemie, 2012, 124(8): 1931-1934.
[16]  Li L L, Diau E W G. Porphyrin-sensitized solar cells[J]. Chemical Society Reviews, 2013, 42(1): 291-304.
[17]  Yang W J (阳卫军) , Guo C C (郭灿城), Mao Y L (毛彦利) , et al. Catalysis and Substituent Effects of Monom anganese porphyrins and Monoiron porphyrins for Pinene Oxidation with Air [J]. Chemical Journal of Chinese Universities (高等学校化学学报), 2005, 26(9): 1690-1694.
[18]  Wang B, Zuo X, Wu Y Q, et al. Preparation, characterization and gas sensing properties of lead tetra-(tert-butyl)-5, 10, 15, 20-tetraazaporphyrin spin-coating films[J]. Sensors and Actuators B: Chemical, 2007, 125(1): 268-273.
[19]  Gregg B A, Fox M A, Bard A J. Porphyrin octaesters: new discotic liquid crystals[J]. Journal of the Chemical Society, Chemical Communications, 1987 (15): 1134-1135.
[20]  Jin Z P (金志平), Peng X J (彭孝军), Sun L C (孙立成). Application of porphyrin supramolecular compounds in molecular devices [J]. Chemistry(化学通报), 2003, 66(7): 464-473.
[21]  Tétreault N, Gr?tzel M. Novel nanostructures for next generation dye-sensitized solar cells[J]. Energy & Environmental Science, 2012, 5(9): 8506-8516.
[22]  Listorti A, O’Regan B, Durrant J R. Electron transfer dynamics in dye-sensitized solar cells[J]. Chemistry of Materials, 2011, 23(15): 3381-3399.
[23]  Nazeeruddin M K, Kay A, Rodicio I, et al. Conversion of light to electricity by cis-X2bis (2, 2'-bipyridyl-4, 4'-dicarboxylate) ruthenium (II) charge-transfer sensitizers (X= Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes[J]. Journal of the American Chemical Society, 1993, 115(14): 6382-6390.
[24]  Gon?alves L M, de Zea Bermudez V, Ribeiro H A, et al. Dye-sensitized solar cells: A safe bet for the future[J]. Energy & Environmental Science, 2008, 1(6): 655-667.
[25]  Campbell W M, Jolley K W, Wagner P, et al. Highly efficient porphyrin sensitizers for dye-sensitized solar cells[J]. The Journal of Physical Chemistry C, 2007, 111(32): 11760-11762.
[26]  Panda M K, Ladomenou K, Coutsolelos A G. Porphyrins in bio-inspired transformations: Light-harvesting to solar cell[J]. Coordination Chemistry Reviews, 2012, 256(21): 2601-2627.
[27]  Lu J, Xu X, Li Z, et al. Zinc porphyrins with a pyridine-ring-anchoring group for dye-sensitized solar cells[J]. Chem Asian J, 2013, 8(956): 962.
[28]  Mishra A, Fischer M K R, B?uerle P. Metal‐free organic dyes for dye‐sensitized solar cells: From structure: Property relationships to design rules[J]. Angewandte Chemie International Edition, 2009, 48(14): 2474-2499.
[29]  Parisi M L, Maranghi S, Basosi R. The evolution of the dye sensitized solar cells from Gr?tzel prototype to up-scaled solar applications: A life cycle assessment approach[J]. Renewable and Sustainable Energy Reviews, 2014, 39: 124-138.
[30]  Dhanalakshmi K B, Latha S, Anandan S, et al. Dye sensitized hydrogen evolution from water[J]. International journal of hydrogen energy, 2001, 26(7): 669-674.
[31]  Zhang P, Wang M, Gloaguen F, et al. Electrocatalytic hydrogen evolution from neutral water by molecular cobalt tripyridine–diamine complexes[J]. Chemical Communications, 2013, 49(82): 9455-9457.
[32]  Wang C L, Lan C M, Hong S H, et al. Enveloping porphyrins for efficient dye-sensitized solar cells[J]. Energy & Environmental Science, 2012, 5(5): 6933-6940.
[33]  Kalyanasundaram K, Gr?tzel M. Light induced redox reactions of water soluble porphyrins, sensitization of hydrogen generation from water by zincporphyrin derivatives[J]. Helvetica Chimica Acta, 1980, 63(2): 478-485.
[34]  Rao C N R, Sood A K, Subrahmanyam K S, et al. Graphene: the new two‐dimensional nanomaterial[J]. Angewandte Chemie International Edition, 2009, 48(42): 7752-7777.
[35]  Li Q, Jiang Z, Qin J, et al. Heterocyclic-Functionalized Organic Dyes for Dye-Sensitized Solar Cells: Tuning Solar Cell Performance by Structural Modification[J]. Australian Journal of Chemistry, 2012, 65(9): 1203-1212.
[36]  YeonáLee C, CheonáJeong N. Porphyrin sensitized solar cells: TiO 2 sensitization with a π-extended porphyrin possessing two anchoring groups[J]. Chemical Communications, 2010, 46(33): 6090-6092.
[37]  Liu J, Zhang J, Xu M, et al. Mesoscopic titania solar cells with the tris (1, 10-phenanthroline) cobalt redox shuttle: uniped versus biped organic dyes[J]. Energy & Environmental Science, 2011, 4(8): 3021-3029.
[38]  Lu J, Liu S, Li H, et al. Pyrene-conjugated porphyrins for efficient mesoscopic solar cells: the role of the spacer[J]. Journal of Materials Chemistry A, 2014, 2(41): 17495-17501.
[39]  Yella A, Mai C L, Zakeeruddin S M, et al. Molecular Engineering of Push–Pull Porphyrin Dyes for Highly Efficient Dye-Sensitized Solar Cells: The Role of Benzene Spacers[J]. Angewandte Chemie, 2014, 126(11): 3017-3021.
[40]  Liu Y, Xiang N, Feng X, et al. Thiophene-linked porphyrin derivatives for dye-sensitized solar cells[J]. Chemical Communications, 2009 (18): 2499-2501.
[41]  Li F Y (李富友), Yu J H (余军华), Zhang B W (张宝文), et al. Study on Photocurrent Generation of Three Porphyrin Monolayer Modified Electrodes with Various Side Chain Lengths [J]. Acta Chimica Sinica(化学学报), 2006, 64(4): 301-305.
[42]  Lu J, Zhang B, Yuan H, et al. D? π–A Porphyrin Sensitizers with π-Extended Conjugation for Mesoscopic Solar Cells[J]. The Journal of Physical Chemistry C, 2014, 118(27): 14739-14748.
[43]  Wang C L, Hu J Y, Wu C H, et al. Highly efficient porphyrin-sensitized solar cells with enhanced light harvesting ability beyond 800 nm and efficiency exceeding 10%[J]. Energy & Environmental Science, 2014, 7(4): 1392-1396.
[44]  Cao K, Lu J, Li H, et al. Efficient dye-sensitized solar cells using mesoporous submicrometer TiO 2 beads[J]. RSC Advances, 2015, 5(77): 62630-62637.
[45]  Guo M, He R, Dai Y, et al. Electron-Deficient Pyrimidine Adopted in Porphyrin Sensitizers: A Theoretical Interpretation of π-Spacers Leading to Highly Efficient Photo-to-Electric Conversion Performances in Dye-Sensitized Solar Cells[J]. The Journal of Physical Chemistry C, 2012, 116(16): 9166-9179.
[46]  Lin C Y, Wang Y C, Hsu S J, et al. Preparation and spectral, electrochemical, and photovoltaic properties of acene-modified zinc porphyrins[J]. The Journal of Physical Chemistry C, 2009, 114(1): 687-693.
[47]  Lee C Y, Hupp J T. Dye sensitized solar cells: TiO2 sensitization with a BODIPY-porphyrin antenna system[J]. Langmuir, 2009, 26(5): 3760-3765.
[48]  Ngweniform P, Kusumoto Y, Ikeda M, et al. Conformation-dependent hydrogen evolution with cobalt (II) tetraphenylporphyrin solubilized into poly (l-glutamate)–decylammonium ion complex[J]. Chemical physics letters, 2006, 428(4): 436-439.
[49]  Kim W, Tachikawa T, Majima T, et al. Tin-porphyrin sensitized TiO 2 for the production of H 2 under visible light[J]. Energy & Environmental Science, 2010, 3(11): 1789-1795.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133