全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 

超薄Co3O4纳米片薄膜制备及其电化学传感器性能
Synthesis of Ultrathin?Co3O4 Nanoflakes Film Material for Electrochemical Sensing

DOI: 10.13208/j.electrochem.160124

Keywords: Co3O4,薄膜材料,超薄纳米片,电化学传感器,H2O2检测,
Co3O4
,film material,ultrathin nanoflakes,electrochemical sensing,?H2O2 detecting

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要 本文以电沉积的金属钴薄膜作为原材料,通过简单的氧化技术获得了薄膜前驱体材料,并进一步在350 oC热处理条件下获得了超薄Co3O4纳米片薄膜材料. 通过扫描电镜(SEM),X-射线衍射(XRD),透射电镜(TEM)等手段对材料的物理结构进行了深入分析,并通过循环伏安法(CV)表征了该薄膜材料的电化学活性. 作为电化学传感器件的活性材料,该薄膜材料对H2O2的检测表现出较宽的线性浓度检测范围(0 ~ 4 mmol?L-1)和较高的电流响应(~ 1.15 mA?cm-2),在该领域具有较高的应用价值.
Ultrathin cobalt oxide (Co3O4 ) nanoflakes film material was synthesized by using an electro-deposited cobalt layer as a raw material through a simple oxidation method and followed by a heat treatment at 350 oC. The physical characterizations of the Co3O4 nanoflakes film were performed by scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM) technologies, and the electrochemical activity was measured by cyclic voltammetry (CV). As a promising material for electrochemical sensing, the as-synthesized ultrathin Co3O4 nanoflakes film material exhibited excellent electrochemical activity for H2O2 with a wide linear detection range (0 ~ 4 mmol?L-1) and high sensitive current response (~ 1.15 mA?cm-2)

References

[1]  Sun X, Go S, Liu Y, et al. Dumbbell-like Pt-Pd-Fe3O4 nanoparticles for enhanced electrochemical detection of H2O2. Nano Letters, 2012, 12(9):4859-4863.
[2]  Meng T, Xu Q Q, Wang Z H, et al. Co3O4 Nanorods with Self-assembled Nanoparticles in Queue for Supercapacitor[J]. Electrochimica Acta, 2015, 180: 104-111.
[3]  Chen H, Wang Y, Xu C. Facile and green synthesis of mesoporous Co3O4 nanowires[J]. Materials Letters, 2016, 163: 72-75.
[4]  Deng S, Xiao X, Xing X, et al. Structure and catalytic activity of 3D macro/mesoporous Co3O4 for CO oxidation prepared by a facile self-sustained decomposition of metal-organic complexes[J]. Journal of Molecular Catalysis A: Chemical, 2015, 398: 79-85.
[5]  Barkaoui S, Haddaoui M, Dhaouadi H, et al. Hydrothermal synthesis of urchin-like Co3O4 nanostructures and their electrochemical sensing performance of H2O2[J]. Journal of Solid State Chemistry, 2015, 228: 226-231.
[6]  Wang M, Jiang X, Liu J, et al. Highly sensitive H2O2 sensor based on Co3O4 hollow sphere prepared via a template-free method[J]. Electrochimica Acta, 2015, 182: 613-620.
[7]  Zhao X, Pang Z, Wu M, et al. Magnetic field-assisted synthesis of wire-like Co3O4 nanostructures: Electrochemical and photocatalytic studies[J]. Materials Research Bulletin, 2013, 48(48): 92-95.
[8]  Zhou X, Shen X, Xia Z, et al. Hollow Fluffy Co3O4 Cages as Efficient Electroactive Materials for Supercapacitors and Oxygen Evolution Reaction[J]. ACS Applied Materials Interfaces, 2015, 7(36): 20322?20331.
[9]  Huang G, Xu S, Lu S, et al. Micro-/Nanostructured Co3O4 Anode with Enhanced Rate Capability for Lithium-Ion Batteries[J] . ACS Applied Materials Interfaces, 2014, 6(10), 7236?7243.
[10]  Pan G X, Xia X H, Cao F, et al. Construction of Co/ Co3O4-C ternary core-branch arrays as enhanced anode materials for lithium ion batteries[J]. Journal of Power Sources, 2015, 293(4): 585-591.
[11]  Khun K, Ibupoto Z H, Liu X, et al. The ethylene glycol template assisted hydrothermal synthesis of Co3O4 nanowires; structural characterization and their application asglucose non-enzymatic sensor[J]. Materials Science and Engineering B, 2015, 194(1): 94-100.
[12]  Fan Y, Shao H, Wang J, et al. Synthesis of foam-like freestanding Co3O4 nanosheets with enhanced electrochemical activities[J]. Chemical Communications, 2011, 47(12): 3469-3471.
[13]  Fan Y, Zhang N, Zhang L, et al. Synthesis of Small-Sized Freestanding Co3O4 Nanosheets with Improved Activity for H2O2 Sensing and Oxygen Evolution[J]. Journal Electrochemical Society, 2013, 160(2): F218-F223.
[14]  Fan Y, Shao G, Ma Z, et al. Ultrathin Nanoflakes Assembled 3D Hierarchical Mesoporous Co3O4 Nanoparticles for High-rate Pseudocapacitors[J]. Particle Particle Systems Characterization, 2014, 31(10): 1079-1083.
[15]  Jeon H S, Jee M S, Kim H, et al. Simple Chemical Solution Deposition of Co3O4 Thin Film Electrocatalyst for Oxygen Evolution Reaction[J]. ACS Applied Materials Interfaces, 2015, 7(44): 24550?24555.
[16]  Liu J, Kelly S J, Epstein E S, et al. Three-dimensionally scaffolded Co3O4 nanosheet anodes with high rate performance. Journal of Power Sources[J], 2015, 299: 40-48
[17]  Dam D T, Lee J M. Three-Dimensional Cobalt Oxide Microstructures with Brush-like Morphology via Surfactant-Dependent Assembly[J]. ACS Applied Materials Interfaces, 2014, 6(23): 20729?20737.
[18]  Zou Y, Kinloch I A, Dryfe R A W. Mesoporous Vertical Co3O4 Nanosheet Arrays on Nitrogen-Doped Graphene Foam with Enhanced Charge-Storage Performance[J]. ACS Applied Materials Interfaces, 2015, 7(41): 22831?22838.
[19]  Wang N, Han Y, Xu Y, et al. Detection of H2O2 at the nanomolar level by electrode modified with ultrathin AuCu nanowires. Analytical Chemistry, 2014, 87(1):457-463.
[20]  Wang G, Cao D, Yin C, et al. Nickel foam supported-Co3O4 nanowire arrays for H2O2 electroreduction. Chemistry of Materials, 2009, 21(21):5112-5118.
[21]  Li L, Liu M, He S, et al. Freestanding 3D Mesoporous Co3O4@Carbon Foam Nanostructures for Ethanol Gas Sensing[J]. Analytical Chemistry, 2014, 86(15): 7996?8002.
[22]  Qiu K, Lu Y, Cheng J, et al. Ultrathin mesoporous Co3O4 nanosheets on Ni foam for high-performance supercapacitors[J]. Electrochimica Acta, 2015, 157: 62-68.
[23]  Chen M, Xia X, Yin J, et al. Construction of Co3O4 nanotubes as high-performance anode material for lithium ion batteries[J]. Electrochimica Acta, 2015, 160: 15-21.
[24]  Pan X, Chen X, Li Y, et al. Facile Synthesis of Co3O4 Nanosheets Electrode with Ultrahigh Specific Capacitance for Electrochemical Supercapacitors[J]. Electrochimica Acta, 2015, 182: 1101-1106.
[25]  Zhang D E, Ren L Z, Hao X Y, et al. Synthesis and photocatalytic property of multilayered Co3O4 [J]. Applied Surface Science, 2015, 355: 547-552.
[26]  Wang Y, Wang B, Xiao F, et al. Facile synthesis of nanocage Co3O4 for advanced lithium-ion batteries[J]. Journal of Power Sources, 2015, 298: 203-208.
[27]  Fan Y, Zhang Y, Zhang L, et al. Co3O4-Coated TiO2 Nanotube Composites Synthesized through Photo-Deposition Strategy with Enhanced Performance for Lithium-Ion Batteries[J]. Electrochimica Acta,2013, 94: 285-293.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133