|
- 2016
燃料电池电极表界面催化氧还原反应的STM研究进展
|
Abstract:
摘要 催化氧还原反应的电催化剂是燃料电池的一个重要组成部分. 从分子尺度研究催化氧还原反应中所涉及的表界面反应机理,不仅有利于深入理解催化机理,更有利于指导人们合理地设计新型的电催化剂. 本文结合近年来国内外的研究工作,概述了通过扫描隧道显微镜研究燃料电池内部催化氧还原反应过程中所涉及的表面形貌变化、单分子结构变化、中间体的观测以及反应产物调控等方面最新进展,并展望了该研究领域的发展趋势
[1] | 10 Sasaki, K, Naohara, H, Cai, Y et al. Core‐Protected Platinum Monolayer Shell High‐Stability Electrocatalysts for Fuel‐Cell Cathodes. Angewandte Chemie International Edition[J], 2010, 49(46): 8602-8607. |
[2] | 18 Miner, E M, Fukushima, T, Sheberla, D et al. Electrochemical oxygen reduction catalysed by Ni-3(hexaiminotriphenylene)(2). Nature Communications[J], 2016, 7: 7. |
[3] | 20 Tang, H J, Yin, H J, Wang, J Y et al. Molecular Architecture of Cobalt Porphyrin Multilayers on Reduced Graphene Oxide Sheets for High-Performance Oxygen Reduction Reaction. Angewandte Chemie-International Edition[J], 2013, 52(21): 5585-5589. |
[4] | 23 Feng, J, Liang, Y, Wang, H et al. Engineering manganese oxide/nanocarbon hybrid materials for oxygen reduction electrocatalysis. Nano Research[J], 2012, 5(10): 718-725. |
[5] | 36 Sun, S R, Jiang, N & Xia, D G Density Functional Theory Study of the Oxygen Reduction Reaction on Metalloporphyrins and Metallophthalocyanines. Journal of Physical Chemistry C[J], 2011, 115(19): 9511-9517. |
[6] | 37 Sun, Y, Chen, K X, Jia, L et al. Toward understanding macrocycle specificity of iron on the dioxygen-binding ability: a theoretical study. Physical Chemistry Chemical Physics[J], 2011, 13(30): 13800-13808. |
[7] | 43 Jia, Q, Ramaswamy, N, Hafiz, H et al. Experimental Observation of Redox-Induced Fe-N Switching Behavior as a Determinant Role for Oxygen Reduction Activity. Acs Nano[J], 2015, 9(12): 12496-12505. |
[8] | 5. Wang, W, Su, C, Wu, Y et al. Progress in solid oxide fuel cells with nickel-based anodes operating on methane and related fuels. Chemical Reviews[J], 2013, 113(10): 8104-8151. |
[9] | 8. Yu, W, Porosoff, M D & Chen, J G Review of Pt-based bimetallic catalysis: from model surfaces to supported catalysts. Chemical Reviews[J], 2012, 112(11): 5780-5817. |
[10] | 13 Holewinski, A, Idrobo, J C & Linic, S High-performance Ag-Co alloy catalysts for electrochemical oxygen reduction. Nature Chemistry[J], 2014, 6(9): 828-834. |
[11] | 23 Feng, J, Liang, Y, Wang, H et al. Engineering manganese oxide/nanocarbon hybrid materials for oxygen reduction electrocatalysis. Nano Research[J], 2012, 5(10): 718-725. |
[12] | 25 Gorlin, Y & Jaramillo, T F A Bifunctional Nonprecious Metal Catalyst for Oxygen Reduction and Water Oxidation. Journal of the American Chemical Society[J], 2010, 132(39): 13612-13614. |
[13] | 26 Liang, Y, Li, Y, Wang, H et al. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nature Materials[J], 2011, 10(10): 780-786. |
[14] | 35 Climent, V, Fu, Y C, Chumillas, S et al. Probing the Electrocatalytic Oxygen Reduction Reaction Reactivity of Immobilized Multicopper Oxidase CueO. Journal of Physical Chemistry C[J], 2014, 118(29): 15754-15765. |
[15] | 36 Sun, S R, Jiang, N & Xia, D G Density Functional Theory Study of the Oxygen Reduction Reaction on Metalloporphyrins and Metallophthalocyanines. Journal of Physical Chemistry C[J], 2011, 115(19): 9511-9517. |
[16] | 38 Hulsken, B, Van Hameren, R, Gerritsen, J W et al. Real-time single-molecule imaging of oxidation catalysis at a liquid-solid interface. Nature Nanotechnology[J], 2007, 2(5): 285-289. |
[17] | 39 den Boer, D, Li, M, Habets, T et al. Detection of different oxidation states of individual manganese porphyrins during their reaction with oxygen at a solid/liquid interface. Nature Chemistry[J], 2013, 5(7): 621-627. |
[18] | 43 Jia, Q, Ramaswamy, N, Hafiz, H et al. Experimental Observation of Redox-Induced Fe-N Switching Behavior as a Determinant Role for Oxygen Reduction Activity. Acs Nano[J], 2015, 9(12): 12496-12505. |
[19] | 44 Strbac, S, Srejic, I, Smiljanic, M et al. The effect of rhodium nanoislands on the electrocatalytic activity of gold for oxygen reduction in perchloric acid solution. Journal of Electroanalytical Chemistry[J], 2013, 704: 24-31. |
[20] | 45 Sheng, Z H, Gao, H L, Bao, W J et al. Synthesis of boron doped graphene for oxygen reduction reaction in fuel cells. Journal of Materials Chemistry[J], 2012, 22(2): 390-395. |
[21] | 14 Kuttiyiel, K A, Sasaki, K, Su, D et al. Gold-promoted structurally ordered intermetallic palladium cobalt nanoparticles for the oxygen reduction reaction. Nature Communications[J], 2014, 5: 8. |
[22] | 16 Savadogo, O, Lee, K, Oishi, K et al. New palladium alloys catalyst for the oxygen reduction reaction in an acid medium. Electrochemistry Communications[J], 2004, 6(2): 105-109. |
[23] | 28 Sedona, F, Di Marino, M, Forrer, D et al. Tuning the catalytic activity of Ag(110)-supported Fe phthalocyanine in the oxygen reduction reaction. Nature Materials[J], 2012, 11(11): 970-977. |
[24] | 29 Subbaraman, R, Danilovic, N, Lopes, P P et al. Origin of Anomalous Activities for Electrocatalysts in Alkaline Electrolytes. Journal of Physical Chemistry C[J], 2012, 116(42): 22231-22237. |
[25] | 33 Yoshimoto, S, Tada, A & Itaya, K In situ scanning tunneling microscopy study of the effect of iron octaethylporphyrin adlayer on the electrocatalytic reduction of O-2 on Au(111). Journal of Physical Chemistry B[J], 2004, 108(17): 5171-5174. |
[26] | 34 Grumelli, D, Wurster, B, Stepanow, S et al. Bio-inspired nanocatalysts for the oxygen reduction reaction. Nature Communications[J], 2013, 4: 6. |
[27] | 2. Steele, B C H & Heinzel, A Materials for fuel-cell technologies. Nature[J], 2001, 414(6861): 345-352. |
[28] | 8. Yu, W, Porosoff, M D & Chen, J G Review of Pt-based bimetallic catalysis: from model surfaces to supported catalysts. Chemical Reviews[J], 2012, 112(11): 5780-5817. |
[29] | 12 Chen, C, Kang, Y J, Huo, Z Y et al. Highly Crystalline Multimetallic Nanoframes with Three-Dimensional Electrocatalytic Surfaces. Science[J], 2014, 343(6177): 1339-1343. |
[30] | 10 Sasaki, K, Naohara, H, Cai, Y et al. Core‐Protected Platinum Monolayer Shell High‐Stability Electrocatalysts for Fuel‐Cell Cathodes. Angewandte Chemie International Edition[J], 2010, 49(46): 8602-8607. |
[31] | 14 Kuttiyiel, K A, Sasaki, K, Su, D et al. Gold-promoted structurally ordered intermetallic palladium cobalt nanoparticles for the oxygen reduction reaction. Nature Communications[J], 2014, 5: 8. |
[32] | 16 Savadogo, O, Lee, K, Oishi, K et al. New palladium alloys catalyst for the oxygen reduction reaction in an acid medium. Electrochemistry Communications[J], 2004, 6(2): 105-109. |
[33] | 21 Chung, H T, Won, J H & Zelenay, P Active and stable carbon nanotube/nanoparticle composite electrocatalyst for oxygen reduction. Nature Communications[J], 2013, 4: 5. |
[34] | 24 Zhao, A Q, Masa, J, Xia, W et al. Spinel Mn-Co Oxide in N-Doped Carbon Nanotubes as a Bifunctional Electrocatalyst Synthesized by Oxidative Cutting. Journal of the American Chemical Society[J], 2014, 136(21): 7551-7554. |
[35] | 27 Gewirth, A A & Thorum, M S Electroreduction of dioxygen for fuel-cell applications: materials and challenges. Inorganic Chemistry[J], 2010, 49(8): 3557-3566. |
[36] | 31 Wan, L J, Moriyama, T, Ito, M et al. In situ STM imaging of surface dissolution and rearrangement of a Pt-Fe alloy electrocatalyst in electrolyte solution. Chemical Communications[J], 2002(1): 58-59. |
[37] | 32 Todoroki, N, Iijima, Y, Takahashi, R et al. Structure and Electrochemical Stability of Pt-Enriched Ni/Pt(111) Topmost Surface Prepared by Molecular Beam Epitaxy. Journal of the Electrochemical Society[J], 2013, 160(6): F591-F596. |
[38] | 33 Yoshimoto, S, Tada, A & Itaya, K In situ scanning tunneling microscopy study of the effect of iron octaethylporphyrin adlayer on the electrocatalytic reduction of O-2 on Au(111). Journal of Physical Chemistry B[J], 2004, 108(17): 5171-5174. |
[39] | 13 Holewinski, A, Idrobo, J C & Linic, S High-performance Ag-Co alloy catalysts for electrochemical oxygen reduction. Nature Chemistry[J], 2014, 6(9): 828-834. |
[40] | 17 Wang, X, Choi, S-I, Roling, L T et al. Palladium-platinum core-shell icosahedra with substantially enhanced activity and durability towards oxygen reduction. Nature Communications[J], 2015, 6: 7594. |
[41] | 21 Chung, H T, Won, J H & Zelenay, P Active and stable carbon nanotube/nanoparticle composite electrocatalyst for oxygen reduction. Nature Communications[J], 2013, 4: 5. |
[42] | 24 Zhao, A Q, Masa, J, Xia, W et al. Spinel Mn-Co Oxide in N-Doped Carbon Nanotubes as a Bifunctional Electrocatalyst Synthesized by Oxidative Cutting. Journal of the American Chemical Society[J], 2014, 136(21): 7551-7554. |
[43] | 25 Gorlin, Y & Jaramillo, T F A Bifunctional Nonprecious Metal Catalyst for Oxygen Reduction and Water Oxidation. Journal of the American Chemical Society[J], 2010, 132(39): 13612-13614. |
[44] | 1. Sharaf, O Z & Orhan, M F An overview of fuel cell technology: Fundamentals and applications. Renewable & Sustainable Energy Reviews[J], 2014, 32: 810-853. |
[45] | 4. Badwal, S, Giddey, S, Kulkarni, A et al. Direct ethanol fuel cells for transport and stationary applications-A comprehensive review. Applied Energy[J], 2015, 145: 80-103. |
[46] | 5. Wang, W, Su, C, Wu, Y et al. Progress in solid oxide fuel cells with nickel-based anodes operating on methane and related fuels. Chemical Reviews[J], 2013, 113(10): 8104-8151. |
[47] | 6. Wu, G, More, K L, Johnston, C M et al. High-Performance Electrocatalysts for Oxygen Reduction Derived from Polyaniline, Iron, and Cobalt. Science[J], 2011, 332(6028): 443-447. |
[48] | 3. Debe, M K Electrocatalyst approaches and challenges for automotive fuel cells. Nature[J], 2012, 486(7401): 43-51. |
[49] | 22 Zhao, Y, Nakamura, R, Kamiya, K et al. Nitrogen-doped carbon nanomaterials as non-metal electrocatalysts for water oxidation. Nature Communications[J], 2013, 4: 7. |
[50] | 32 Todoroki, N, Iijima, Y, Takahashi, R et al. Structure and Electrochemical Stability of Pt-Enriched Ni/Pt(111) Topmost Surface Prepared by Molecular Beam Epitaxy. Journal of the Electrochemical Society[J], 2013, 160(6): F591-F596. |
[51] | 35 Climent, V, Fu, Y C, Chumillas, S et al. Probing the Electrocatalytic Oxygen Reduction Reaction Reactivity of Immobilized Multicopper Oxidase CueO. Journal of Physical Chemistry C[J], 2014, 118(29): 15754-15765. |
[52] | 44 Strbac, S, Srejic, I, Smiljanic, M et al. The effect of rhodium nanoislands on the electrocatalytic activity of gold for oxygen reduction in perchloric acid solution. Journal of Electroanalytical Chemistry[J], 2013, 704: 24-31. |
[53] | 4. Badwal, S, Giddey, S, Kulkarni, A et al. Direct ethanol fuel cells for transport and stationary applications-A comprehensive review. Applied Energy[J], 2015, 145: 80-103. |
[54] | 7. Cui, C, Gan, L, Heggen, M et al. Compositional segregation in shaped Pt alloy nanoparticles and their structural behaviour during electrocatalysis. Nature Materials[J], 2013, 12(8): 765-771. |
[55] | 11 Wang, G W, Huang, B, Xiao, L et al. Pt Skin on AuCu Intermetallic Substrate: A Strategy to Maximize Pt Utilization for Fuel Cells. Journal of the American Chemical Society[J], 2014, 136(27): 9643-9649. |
[56] | 15 Lu, Y Z, Jiang, Y Y, Gao, X H et al. Strongly Coupled Pd Nanotetrahedron/Tungsten Oxide Nanosheet Hybrids with Enhanced Catalytic Activity and Stability as Oxygen Reduction Electrocatalysts. Journal of the American Chemical Society[J], 2014, 136(33): 11687-11697. |
[57] | 20 Tang, H J, Yin, H J, Wang, J Y et al. Molecular Architecture of Cobalt Porphyrin Multilayers on Reduced Graphene Oxide Sheets for High-Performance Oxygen Reduction Reaction. Angewandte Chemie-International Edition[J], 2013, 52(21): 5585-5589. |
[58] | 30 Li, D G, Wang, C, Strmcnik, D S et al. Functional links between Pt single crystal morphology and nanoparticles with different size and shape: the oxygen reduction reaction case. Energy & Environmental Science[J], 2014, 7(12): 4061-4069. |
[59] | 37 Sun, Y, Chen, K X, Jia, L et al. Toward understanding macrocycle specificity of iron on the dioxygen-binding ability: a theoretical study. Physical Chemistry Chemical Physics[J], 2011, 13(30): 13800-13808. |
[60] | 40 Li, M, den Boer, D, Iavicoli, P et al. Tip-induced chemical manipulation of metal porphyrins at a liquid/solid interface. Journal of the American Chemical Society[J], 2014, 136(50): 17418-17421. |
[61] | 42 Ramaswamy, N, Tylus, U, Jia, Q Y et al. Activity Descriptor Identification for Oxygen Reduction on Nonprecious Electrocatalysts: Linking Surface Science to Coordination Chemistry. Journal of the American Chemical Society[J], 2013, 135(41): 15443-15449. |
[62] | 30 Li, D G, Wang, C, Strmcnik, D S et al. Functional links between Pt single crystal morphology and nanoparticles with different size and shape: the oxygen reduction reaction case. Energy & Environmental Science[J], 2014, 7(12): 4061-4069. |
[63] | 31 Wan, L J, Moriyama, T, Ito, M et al. In situ STM imaging of surface dissolution and rearrangement of a Pt-Fe alloy electrocatalyst in electrolyte solution. Chemical Communications[J], 2002(1): 58-59. |
[64] | 45 Sheng, Z H, Gao, H L, Bao, W J et al. Synthesis of boron doped graphene for oxygen reduction reaction in fuel cells. Journal of Materials Chemistry[J], 2012, 22(2): 390-395. |
[65] | 2. Steele, B C H & Heinzel, A Materials for fuel-cell technologies. Nature[J], 2001, 414(6861): 345-352. |
[66] | 9. Wang, D, Xin, H L, Hovden, R et al. Structurally ordered intermetallic platinum-cobalt core-shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts. Nature Materials[J], 2013, 12(1): 81-87. |
[67] | 28 Sedona, F, Di Marino, M, Forrer, D et al. Tuning the catalytic activity of Ag(110)-supported Fe phthalocyanine in the oxygen reduction reaction. Nature Materials[J], 2012, 11(11): 970-977. |
[68] | 29 Subbaraman, R, Danilovic, N, Lopes, P P et al. Origin of Anomalous Activities for Electrocatalysts in Alkaline Electrolytes. Journal of Physical Chemistry C[J], 2012, 116(42): 22231-22237. |
[69] | 7. Cui, C, Gan, L, Heggen, M et al. Compositional segregation in shaped Pt alloy nanoparticles and their structural behaviour during electrocatalysis. Nature Materials[J], 2013, 12(8): 765-771. |
[70] | 9. Wang, D, Xin, H L, Hovden, R et al. Structurally ordered intermetallic platinum-cobalt core-shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts. Nature Materials[J], 2013, 12(1): 81-87. |
[71] | 11 Wang, G W, Huang, B, Xiao, L et al. Pt Skin on AuCu Intermetallic Substrate: A Strategy to Maximize Pt Utilization for Fuel Cells. Journal of the American Chemical Society[J], 2014, 136(27): 9643-9649. |
[72] | 15 Lu, Y Z, Jiang, Y Y, Gao, X H et al. Strongly Coupled Pd Nanotetrahedron/Tungsten Oxide Nanosheet Hybrids with Enhanced Catalytic Activity and Stability as Oxygen Reduction Electrocatalysts. Journal of the American Chemical Society[J], 2014, 136(33): 11687-11697. |
[73] | 19 Masa, J, Xia, W, Muhler, M et al. On the Role of Metals in Nitrogen-Doped Carbon Electrocatalysts for Oxygen Reduction. Angewandte Chemie-International Edition[J], 2015, 54(35): 10102-10120. |
[74] | 38 Hulsken, B, Van Hameren, R, Gerritsen, J W et al. Real-time single-molecule imaging of oxidation catalysis at a liquid-solid interface. Nature Nanotechnology[J], 2007, 2(5): 285-289. |
[75] | 39 den Boer, D, Li, M, Habets, T et al. Detection of different oxidation states of individual manganese porphyrins during their reaction with oxygen at a solid/liquid interface. Nature Chemistry[J], 2013, 5(7): 621-627. |
[76] | 40 Li, M, den Boer, D, Iavicoli, P et al. Tip-induced chemical manipulation of metal porphyrins at a liquid/solid interface. Journal of the American Chemical Society[J], 2014, 136(50): 17418-17421. |
[77] | 41 Nie, Y, Li, L & Wei, Z D Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction. Chemical Society Reviews[J], 2015, 44(8): 2168-2201. |
[78] | 26 Liang, Y, Li, Y, Wang, H et al. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nature Materials[J], 2011, 10(10): 780-786. |
[79] | 27 Gewirth, A A & Thorum, M S Electroreduction of dioxygen for fuel-cell applications: materials and challenges. Inorganic Chemistry[J], 2010, 49(8): 3557-3566. |
[80] | 42 Ramaswamy, N, Tylus, U, Jia, Q Y et al. Activity Descriptor Identification for Oxygen Reduction on Nonprecious Electrocatalysts: Linking Surface Science to Coordination Chemistry. Journal of the American Chemical Society[J], 2013, 135(41): 15443-15449. |
[81] | 1. Sharaf, O Z & Orhan, M F An overview of fuel cell technology: Fundamentals and applications. Renewable & Sustainable Energy Reviews[J], 2014, 32: 810-853. |
[82] | 3. Debe, M K Electrocatalyst approaches and challenges for automotive fuel cells. Nature[J], 2012, 486(7401): 43-51. |
[83] | 6. Wu, G, More, K L, Johnston, C M et al. High-Performance Electrocatalysts for Oxygen Reduction Derived from Polyaniline, Iron, and Cobalt. Science[J], 2011, 332(6028): 443-447. |
[84] | 12 Chen, C, Kang, Y J, Huo, Z Y et al. Highly Crystalline Multimetallic Nanoframes with Three-Dimensional Electrocatalytic Surfaces. Science[J], 2014, 343(6177): 1339-1343. |
[85] | 17 Wang, X, Choi, S-I, Roling, L T et al. Palladium-platinum core-shell icosahedra with substantially enhanced activity and durability towards oxygen reduction. Nature Communications[J], 2015, 6: 7594. |
[86] | 18 Miner, E M, Fukushima, T, Sheberla, D et al. Electrochemical oxygen reduction catalysed by Ni-3(hexaiminotriphenylene)(2). Nature Communications[J], 2016, 7: 7. |
[87] | 19 Masa, J, Xia, W, Muhler, M et al. On the Role of Metals in Nitrogen-Doped Carbon Electrocatalysts for Oxygen Reduction. Angewandte Chemie-International Edition[J], 2015, 54(35): 10102-10120. |
[88] | 22 Zhao, Y, Nakamura, R, Kamiya, K et al. Nitrogen-doped carbon nanomaterials as non-metal electrocatalysts for water oxidation. Nature Communications[J], 2013, 4: 7. |
[89] | 34 Grumelli, D, Wurster, B, Stepanow, S et al. Bio-inspired nanocatalysts for the oxygen reduction reaction. Nature Communications[J], 2013, 4: 6. |
[90] | 41 Nie, Y, Li, L & Wei, Z D Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction. Chemical Society Reviews[J], 2015, 44(8): 2168-2201. |