全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 

光助燃料电池的研究进展
Developments of Photo-Assisted Fuel Cells

DOI: 10.13208/j.electrochem.151243

Keywords: 燃料电池,光电催化,生物电催化,能源转化,

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要 化石燃料的大量开采和利用所导致的能源与环境问题是当今社会可持续发展必须面对的两大挑战. 燃料电池通过电化学反应将燃料中的化学能直接转化为电能, 是目前清洁高效的可再生能源转化装置. 光助燃料电池将光响应成分引入到燃料电池中, 可以实现光能/电能和化学能/电能的双重转化, 从而有效提高能源利用效率, 是未来能源转化装置的发展方向, 在实际应用方面具有重要意义和广阔前景. 本文对光助燃料电池进行了简要综述, 重点介绍了我们小组近些年来在该领域的相关研究进展, 总结了目前存在的一些问题, 并对其发展趋势进行了展望.
The exploitation and utilization of fossil fuels have led to serious energy crisis and environmental pollution. In this case, the development of renewable energy is an alternative to traditional energy consumption. Fuel cells (FCs) can convert chemical energy into electricity via the electrochemical reaction, which is green and environment-friendly. Photo-assisted FCs integrate photo-responsive components into FCs, leading to the dual routes of energy conversion including light energy to electricity and chemical energy to electricity, and thus, improving the energy utilization efficiency. The development of photo-assisted FCs is significant for practical application and promising to solve the coming energy crisis. In this review, we give a brief introduction on photo-assisted FCs and highlight our recent achievements in this field. Meanwhile, the limitations and future perspectives of the systems are also presented. We hope that it will offer an easy to grasp but integral view of the photo-assisted FCs

References

[1]  Lei Y, Wang G, Song S, et al. Synthesis, characterization and assembly of BiOCl nanostructure and their photocatalytic properties[J]. CrystEngComm, 2009, 11(9): 1857-1862.
[2]  Uhrich C, Schueppel R, Petrich A, et al. Organic thin-film photovoltaic cells based on oligothiophenes with reduced bandgap[J]. Advanced Functional Materials, 2007, 17(15): 2991-2999.
[3]  Xin H, Kim F S and Jenekhe S A. Highly efficient solar cells based on poly(3-butylthiophene) nanowires[J]. Journal of the American Chemical Society, 2008, 130(16): 5424-5425.
[4]  Boudghene Stambouli A and Traversa E. Fuel cells, an alternative to standard sources of energy[J]. Renewable and Sustainable Energy Reviews, 2002, 6(3): 295-304.
[5]  Shi C J, Yao Y, Yang Y, et al. Regioregular copolymers of 3-alkoxythiophene and their photovoltaic application[J]. Journal of the American Chemical Society, 2006, 128(27): 8980-8986.
[6]  Scharber M C, Mühlbacher D, Koppe M, et al. Design rules for donors in bulk-heterojunction solar cells-towards 10% energy-conversion efficiency[J]. Advanced Materials, 2006, 18(6): 789-794.
[7]  Kirubakaran A, Jain S and Nema R K. A review on fuel cell technologies and power electronic interface[J]. Renewable and Sustainable Energy Reviews, 2009, 13(9): 2430-2440.
[8]  Lianos P. Production of electricity and hydrogen by photocatalytic degradation of organic wastes in a photoelectrochemical cell: The concept of the photofuelcell: A review of a re-emerging research field[J]. Journal of Hazardous materials, 2011, 185(2-3): 575-590.
[9]  Zhang L L, Han L, Hu P, et al. TiO2 nanotube arrays: Intrinsic peroxidase mimetics[J]. Chemical Communications, 2013, 49(89): 10480-10482.
[10]  Yamada Y, Yoshida S, Honda T, et al. Protonated iron-phthalocyanine complex used for cathode material of a hydrogen peroxide fuel cell operated under acidic conditions[J]. Energy & Environmental Science, 2011, 4(8): 2822-2825.
[11]  Xie X, Ye M, Hsu P C, et al. Microbial battery for efficient energy recovery[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(40): 15925-15930.
[12]  Rasmussen M, Shrier A and Minteer S D. High performance thylakoid bio-solar cell using laccase enzymatic biocathodes[J]. Physical Chemistry Chemical Physics, 2013, 15(23): 9062-9065.
[13]  Kirchhofer N D, Rasmussen M A, Dahlquist F W, et al. The photobioelectrochemical activity of thylakoid bioanodes is increased via photocurrent generation and improved contacts by membrane-intercalating conjugated oligoelectrolytes[J]. Energy & Environmental Science, 2015, 8(9): 2698-2706.
[14]  Siripala W, Ivanovskaya A, Jaramillo T F, et al. A Cu2O/TiO2 heterojunction thin film cathode for photoelectrocatalysis[J]. Solar Energy Materials and Solar Cells, 2003, 77(3): 229-237.
[15]  Hambourger M, Gervaldo M, Svedruzic D, et al. [FeFe]-hydrogenase-catalyzed H2 production in a photoelectrochemical biofuel cell[J]. Journal of the American Chemical Society, 2008, 130(6): 2015-2022.
[16]  de la Garza L, Jeong G, Liddell P A, et al. Enzyme-based photoelectrochemical biofuel cell[J]. Journal of Physical Chemistry B, 2003, 107(37): 10252-10260.
[17]  Deng L, Wang Y, Shang L, et al. A sensitive NADH and glucose biosensor tuned by visible light based on thionine bridged carbon nanotubes and gold nanoparticles multilayer[J]. Biosensors and Bioelectronics, 2008, 24(4): 951-957.
[18]  Miyauchi M, Nakajima A, Watanabe T, et al. Photocatalysis and photoinduced hydrophilicity of various metal oxide thin films[J]. Chemistry of Materials, 2002, 14(6): 2812-2816.
[19]  Lee J S, Kato T, Fujishima A, et al. Photoelectrochemical oxidation of alcohols on polycrystalline zinc oxide[J]. Bulletin of the Chemical Society of Japan, 1984, 57(5): 1179-1183.
[20]  Nonomura K, Komatsu D, Yoshida T, et al. Dependence of the photoelectrochemical performance of sensitised ZnO on the crystalline orientation in electrodeposited ZnO thin films[J]. Physical Chemistry Chemical Physics, 2007, 9(15): 1843-1849.
[21]  Chen Q, Li J, Li X, et al. Visible-light responsive photocatalytic fuel cell based on WO3/W photoanode and Cu2O/Cu photocathode for simultaneous wastewater treatment and electricity generation[J]. Environmental Science & Technology, 2012, 46(20): 11451-11458.
[22]  Le Formal F, Gratzel M and Sivula K. Controlling photoactivity in ultrathin hematite films for solar water-splitting[J]. Advanced Functional Materials, 2010, 20(7): 1099-1107.
[23]  Monllor-Satoca D, Bartsch M, Fabrega C, et al. What do you do, titanium? Insight into the role of titanium oxide as a water oxidation promoter in hematite-based photoanodes[J]. Energy & Environmental Science, 2015, 8(11): 3242-3254.
[24]  Mor G K, Shankar K, Paulose M, et al. Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells[J]. Nano Letter, 2005, 6(2): 215-218.
[25]  Jennings J R, Ghicov A, Peter L M, et al. Dye-sensitized solar cells based on oriented TiO2 nanotube arrays: Transport, trapping, and transfer of electrons[J]. Journal of the American Chemical Society, 2008, 130(40): 13364-13372.
[26]  Brune A, Jeong G, Liddell P A, et al. Porphyrin-sensitized nanoparticulate TiO2 as the photoanode of a hybrid photoelectrochemical biofuel cell[J]. Langmuir, 2004, 20(19): 8366-8371.
[27]  Deng L, Shang L, Wang Y, et al. Multilayer structured carbon nanotubes/poly-l-lysine/laccase composite cathode for glucose/O2 biofuel cell[J]. Electrochemistry Communications, 2008, 10(7): 1012-1015.
[28]  Amao Y and Takeuchi Y. Visible light-operated saccharide-O2 biofuel cell based on the photosensitization of chlorophyll derivative on TiO2 film[J]. International Journal of Hydrogen Energy, 2008, 33(11): 2845-2849.
[29]  Roy P, Berger S and Schmuki P. TiO2 nanotubes: Synthesis and applications[J]. Angewandte Chemie-international Edition, 2011, 50(13): 2904-2939.
[30]  Yehezkeli O, Wilner O I, Tel-Vered R, et al. Generation of photocurrents by bis-aniline-cross-linked Pt nanoparticle/photosystem I composites on electrodes[J]. The Journal of Physical Chemistry B, 2010, 114(45): 14383-14388.
[31]  Wang P, Tang Y M, Wen X M, et al. Enhanced visible light-induced charge separation and charge transport in Cu2O -based photocathodes by urea treatment[J]. ACS Applied Materials & Interfaces, 2015, 7(36): 19887-19893.
[32]  Lin C Y, Lai Y H, Mersch D, et al. Cu2O vertical bar niox nanocomposite as an inexpensive photocathode in photoelectrochemical water splitting[J]. Chemical Science, 2012, 3(12): 3482-3487.
[33]  Bachmeier A, Hall S, Ragsdale S W, et al. Selective visible-light-driven CO2 reduction on a p-type dye-sensitized NiO photocathode[J]. Journal of the American Chemical Society, 2014, 136(39): 13518-13521.
[34]  Jiang J, Zhao K, Xiao X, et al. Synthesis and facet-dependent photoreactivity of BiOCl single-crystalline nanosheets[J]. Journal of the American Chemical Society, 2012, 134(10): 4473-4476.
[35]  Higashihara T and Ueda M. Precision synthesis of tailor-made polythiophene-based materials and their application to organic solar cells[J]. Macromolecular Research, 2013, 21(3): 257-271.
[36]  Wang F, Liu X and Willner I. Integration of photoswitchable proteins, photosynthetic reaction centers and semiconductor/biomolecule hybrids with electrode supports for optobioelectronic applications[J]. Advanced Materials, 2013, 25(3): 349-377.
[37]  Yehezkeli O, Tel-Vered R, Michaeli D, et al. Photosystem I (PSI)/photosystem II (PSII)-based photo-bioelectrochemical cells revealing directional generation of photocurrents[J]. Small, 2013, 9(17): 2970-2978.
[38]  Swain S, Thakur I, Chatterjee S, et al. Array of Cu2O nano-columns fabricated by oblique angle sputter deposition and their application in photo-assisted proton reduction[J]. Journal of Applied Physics, 2015, 117(2): 7.
[39]  Sahara G, Abe R, Higashi M, et al. Photoelectrochemical CO2 reduction using a Ru(II)-Re(I) multinuclear metal complex on a p-type semiconducting NiO electrode[J]. Chemical Communications, 2015, 51(53): 10722-10725.
[40]  Fujishima Y, Okamoto S, Yoshiba M, et al. Photofuel cell comprising titanium oxide and bismuth oxychloride (BiO1-xCl1-y) photocatalysts that uses acidic water as a fuel[J]. Journal of Materials Chemistry A, 2015, 3(16): 8389-8404.
[41]  Cheng H, Huang B and Dai Y. Engineering BiOX (X = Cl, Br, I) nanostructures for highly efficient photocatalytic applications[J]. Nanoscale, 2014, 6(4): 2009-2026.
[42]  Jana?ky C, Endro?di B z, Berkesi O, et al. Visible-light-enhanced electrocatalytic activity of a polypyrrole/magnetite hybrid electrode toward the reduction of dissolved dioxygen[J]. The Journal of Physical Chemistry C, 2010, 114(45): 19338-19344.
[43]  Winther-Jensen B, Winther-Jensen O, Forsyth M, et al. High rates of oxygen reduction over a vapor phase-polymerized PEDOT electrode[J]. Science, 2008, 321(5889): 671-674.
[44]  Cheng H, Huang B, Wang P, et al. In situ ion exchange synthesis of the novel Ag/AgBr/BiOBr hybrid with highly efficient decontamination of pollutants[J]. Chemical Communications, 2011, 47(25): 7054-7056.
[45]  Huisman C L, Huijser A, Donker H, et al. UV polymerization of oligothiophenes and their application in nanostructured heterojunction solar cells[J]. Macromolecules, 2004, 37(15): 5557-5564.
[46]  Khomenko V G, Barsukov V Z and Katashinskii A S. The catalytic activity of conducting polymers toward oxygen reduction[J]. Electrochimica Acta, 2005, 50(7-8): 1675-1683.
[47]  Zhang L L, Xu Z K, Lou B H, et al. Visible-light-enhanced electrocatalysis and bioelectrocatalysis coupled in a miniature glucose/air biofuel cell[J]. ChemSusChem, 2014, 7(9): 2427-2431.
[48]  Zhang L L, Bai L, Xu M, et al. High performance ethanol/air biofuel cells with both the visible-light driven anode and cathode[J]. Nano Energy, 2015, 11: 48-55.
[49]  Xia L, Bai J, Li J, et al. A highly efficient BiVO4/WO3/W heterojunction photoanode for visible-light responsive dual photoelectrode photocatalytic fuel cell[J]. Applied Catalysis B: Environmental, 2016, 183: 224-230.
[50]  Han L, Hu P, Xu Z K, et al. Electrodeposition and photoelectrochemical properties of p-type BiOIαCl1-α nanoplatelet thin films[J]. Electrochimica Acta, 2014, 115: 263-268.
[51]  Yamazaki S I, Siroma Z, Senoh H, et al. A fuel cell with selective electrocatalysts using hydrogen peroxide as both an electron acceptor and a fuel[J]. Journal of Power Sources, 2008, 178(1): 20-25.
[52]  Han L, Guo S J, Xu M, et al. Photoelectrochemical batteries for efficient energy recovery[J]. Chemical Communications, 2014, 50(87): 13331-13333.
[53]  Han L, Bai L, Zhu C, et al. Improving the performance of a membraneless and mediatorless glucose-air biofuel cell with a TiO2 nanotube photoanode[J]. Chemical Communications, 2012, 48(49): 6103-6105.
[54]  Han L, Guo S J, Wang P, et al. Light-driven, membraneless, hydrogen peroxide based fuel cells[J]. Advanced Energy Materials, 2015, 5(2): 4.
[55]  Sanli A E and Aytac A. Response to disselkamp: Direct peroxide/peroxide fuel cell as a novel type fuel cell[J]. International Journal of Hydrogen Energy, 2011, 36(1): 869-875.
[56]  Yamada Y, Fukunishi Y, Yamazaki S, et al. Hydrogen peroxide as sustainable fuel: Electrocatalysts for production with a solar cell and decomposition with a fuel cell[J]. Chemical Communications, 2010, 46(39): 7334-7336.
[57]  Li Z, Luo W, Zhang M, et al. Photoelectrochemical cells for solar hydrogen production: Current state of promising photoelectrodes, methods to improve their properties, and outlook[J]. Energy & Environmental Science, 2013, 6(2): 347-370.
[58]  O'Regan B and Gratzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films[J]. Nature, 1991, 353(6346): 737-740.
[59]  Yehezkeli O, Tel-Vered R, Wasserman J, et al. Integrated photosystem II-based photo-bioelectrochemical cells[J]. Nature Communications, 2012, 3: 742-748.
[60]  Fortage J, Boschloo G, Blart E, et al. A p-type NiO-based dye-sensitized solar cell with an open-circuit voltage of 0.35 V[J]. Angewandte Chemie-international Edition, 2009, 48(24): 4402-4405.
[61]  Zhao X, Guo L B, Hu C Z, et al. Simultaneous destruction of nickel (II)-EDTA with TiO2/Ti film anode and electrodeposition of nickel ions on the cathode[J]. Applied Catalysis B-Environmental, 2014, 144: 478-485.
[62]  Li C L, Li Y B and Delaunay J J. A novel method to synthesize highly photoactive Cu2O microcrystalline films for use in photoelectrochemical cells[J]. ACS Applied Materials & Interfaces, 2014, 6(1): 480-486.
[63]  Lepleux L, Chavillon B, Pellegrin Y, et al. Simple and reproducible procedure to prepare self-nanostructured NiO films for the fabrication of p-type dye-sensitized solar cells[J]. Inorganic Chemistry, 2009, 48(17): 8245-8250.
[64]  Bencsik G, Lukacs Z and Visy C. Photo-electrochemical sensor for dissolved oxygen, based on a poly(3,4-ethylenedioxythiophene)/iron oxalate hybrid electrode[J]. Analyst, 2010, 135(2): 375-380.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133