|
- 2016
用于循环肿瘤细胞捕获的鱼骨型微流控芯片的模拟仿真与优化DOI: 10.3871/j.1004-7220.2016.05.401 Keywords: 微流控芯片,循环肿瘤细胞,细胞捕获,流体模拟Micro-fluidic,chip,Circulating,tumor,cells,(CTCs),Cell,capture,Fluidic,simulation Abstract: 目的 通过对鱼骨型微流控芯片进行模拟仿真与优化,实现癌症患者外周血中循环肿瘤细胞的高效捕获。方法 用Fluent 15.0软件对细胞在微流控芯片中的流动进行建模仿真,通过MATLAB编程统计芯片在不同结构参数(鱼骨宽度、鱼骨间隙、鱼骨高度、通道高度)、液体流动方向与流速等条件(共计250个条件)下所有细胞可被捕获的位置数目,预测细胞捕获效率,并进行实验验证。结果 在鱼骨宽度75 μm、间隙125 μm、鱼骨深度70 μm、通道深度30 μm、流体正向且流速1 mL/h的条件下,鱼骨芯片可以达到最高的细胞捕获效率。结论 通过计算流体动力学方法对在不同芯片中的细胞捕获进行模拟,利用MATLAB建立捕获效率的统计模型并进行优化,快速筛选出可获得细胞高效捕获的参数组合,并通过实验,对优化的芯片参数进行验证,实现了循环肿瘤细胞的高效捕获。Objective To realize the high-efficient capture of circulating tumor cells (CTCs) in the blood of tumor patients by analytic modeling and optimization on the herringbone micro-fluidic chip. Methods By simulating the fluid flow within the herringbone chip with Fluent 15.0 and calculating the capture efficiency with MATLAB to understand how geometric parameters (the herringbone groove width, spacing between herringbone grooves, herringbone groove height and channel height), flow rates and flow directions (forward flow, reverse flow) affected the cell-surface contact for capture of the CTCs, the capture efficiency was predicted and then validated by experiments. Results The herringbone micro-fluidic chip could achieve the optimal capture rate when the herringbone groove width, spacing between herringbone grooves, herringbone groove height and channel height were 75, 125, 70 and 30 μm, respectively, at a flow rate of 1 mL/h with forward direction. Conclusions In this study, cell capture in different micro-fluidic chips was simulated by the method of computational fluid dynamics. The statistic model of capture efficiency is established by MATLAB and optimized to quickly screen a group of physical parameters for high-efficient cell capture. These optimized micro-fluid chip parameters are validated by experiment, which can realize the high-efficient capture of CTCs.
|