全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

重症肌无力相关自身抗体及其检测方法的研究进展
Research progress on myasthenia gravis related autoantibody and detection approaches

DOI: 10.3969/j.issn.1674-8115.2018.10.021

Keywords: 重症肌无力,自身抗体,检测方法,疾病分型,
myasthenia gravis
,autoantibody,detection approach,disease subgroup

Full-Text   Cite this paper   Add to My Lib

Abstract:

重症肌无力( myasthenia gravis,MG)是一种以体液免疫介导为主的自身免疫性疾病,其临床特点为骨骼肌无力和易疲劳。其发病机制与体内产生针对神经 -肌肉接头( neuromuscular junction,NMJ)突触后膜组分的自身抗体密切相关,包括乙酰胆碱受体(acetylcholine receptor,AChR)抗体、肌肉特异性酪氨酸激酶( muscle-specific receptor tyrosine kinase,MuSK)抗体、低密度脂蛋白受体相关蛋白 4(low-density lipoprotein receptor-related protein 4,LRP4)抗体等;近年来发现还存在针对集聚蛋白、乙酰胆碱酯酶相关胶原蛋白胶原链、皮层蛋白等抗原的自身抗体。 MG基于血清抗体特征可分为 AChR-MG、MuSK-MG、LRP4-MG及血清抗体阴性 MG等亚型。 MG自身抗体的检测对其分型诊断、治疗及预后判断非常重要。随着医疗技术的发展,抗体检测方法得到不断改进,为各类型 MG的精准诊疗提供新的契机。该文对 MG相关自身抗体分类及抗体检测方法的最新进展进行综述。
:Myasthenia gravis (MG) is an autoimmue disease mediated mainlyhumoral immunity, which is characterisedskeletal muscle weakness and fatigue. Its pathogensis is closely related to the autoantibodies against the postsynaptic membrane components at neuromuscular junction (NMJ), including acetylcholine receptor (AChR) antibody, muscle-specific receptor tyrosine kinase (MuSK) antibody, and low-density lipoprotein receptor-related protein 4 (LRP4) antibody. In recent years, autoantibodies against antigens such as agrin, collagen Q, and cortactin have been identified. Based on serum antibody patterns, MG can be divided into different subgroups AChR-MG, MuSK-MG, LRP4-MG and seronegative MG. The detection of autoantibody is vital in clinical for subgroup diagnosis, treatment and prognosis. With the development of medical techniques, the antibody detection approaches were improved, providing new opportunities for precise diagnosis and treatment of different subgroups. Thus, this paper reviewed the latest progress of MG autoantibody classification and the antibody detection approaches

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133