全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Variability of Future Rainfall over the Mono River Basin of West-Africa

DOI: 10.4236/ajcc.2019.81008, PP. 137-155

Keywords: Future Rainfall, Variability, Trend, Change, Mono Basin

Full-Text   Cite this paper   Add to My Lib

Abstract:

This study assessed the rainfall trends and changes over Mono river basin under the highest greenhouse gas emission scenario RCP8.5. Simulations of eight regional climate models (RCMs) provided by Africa-CORDEX program were considered. To analyze the performance of a set of regional climate models, the MBE (mean bias error), the RMSE (root mean square error), the volume bias (VB), correlation coefficient (R2) and the t-Test statistics were calculated. The precipitation concentration index (PCI), Mann-Kendall trend test, Theil-Sen’s slope estimator (β), and relative percentage change methods were also adopted for data analysis. Changes from the baseline period 1981-2010 were computed for far future (2061-2090 and 2071-2100). As results, the analysis herein highlighted the multi-models’ mean ability to simulate the Mono river basin rainfall adequately. Two distinct patterns emerged from the calculated PCI indicating that stations in southern basin will have moderate, irregular, and strongly irregular rainfall concentrations, whereas stations in northern basin will have irregular and strongly irregular rainfall concentrations. Significant declining in the rainfall was detected in most stations for the future period. The evolution of the monthly average rainfall amounts will be broadly characterized by a decrease and increase between 32.4 and 12% with late rainy seasons. It is understood that future changes in rainfall distribution and trends will affect the availability of water for crops, which should affect the productivity of rain fed agriculture.

References

[1]  IPCC (2013) Summary for Policymakers. Climate Change Scientific Evidence. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York (New York State), USA.
[2]  IPCC (2014) Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In: Pachauri, R.K. and Meyer, L.A., Eds., Core Writing Team, IPCC, Geneva, Switzerland, 151 p.
[3]  Nikiema, P.M., Sylla, B., Ogunjobi, K., Kebe, I. and Giorgi, F. (2016) Multi-Model CMIP5 and CORDEX Simulations of Historical Summer Temperature and Precipitation Variabilities over West Africa.
[4]  Wade, N.R.S., Faye, S., Dieng, M., Kaba, M. and Kane (2009) Télédétection des catastrophes d inondation urbaine: Le cas de la région de Dakar (Sénégal). Journ. d’Animat. Sci. (JAS09), 8, 203-210.
[5]  Awotwi, A., Kumi, M., Jansson, P.E., Yeboah, F. and Nti, I.K. (2015) Predicting Hydrological Response to Climate Change in the White Volta Catchment, West Africa. Journal of Earth Science & Climatic Change, 6, 249.
[6]  Lambin, E.F., Geist, H.J. and Lepers, E. (2003) Dynamics of Land-Use and Land-Cover Change in Tropical Regions. Annual Review of Environment and Resources, 28, 205-241.
https://doi.org/10.1146/annurev.energy.28.050302.105459
[7]  Carney, L.T., Reinsch, S.S., Lane, P.D., Solberg, O.D., Jansen, L.S., Williams, K.P., et al. (2014) Microbiome Analysis of a Micro Algal Mass Culture Growing in Municipal Waste Water in a Prototype OMEGA Photobioreactor. Algal Research, 4, 52-61.
https://doi.org/10.1016/j.algal.2013.11.006
[8]  Schewe, J., Heinke, J., Gerten, D., Haddeland, I., Arnell, N.W., Clark, D.B., et al. (2014) Multi-Model Assessment of Water Scarcity under Climate Change. PNAS, 111, 3245-3250.
https://doi.org/10.1073/pnas.1222460110
[9]  Douglas, I., Alam, K., Maghenda, M., McDonnell, Y., Mclean, L. and Campbell, J. (2008) Unjust Waters: Climate Change, Flooding and the Urban Poor in Africa. Environment and Urbanization, 20, 187-205.
https://doi.org/10.1177/0956247808089156
[10]  MERF (2009) Plan d’action national d’adaptation aux changements climatiques (PANA), (National Action Plan for Adaptation to Climate Change). Republic of Togo, Lomé.
[11]  Batablinle, L., Lawin, E. and Agnide, S. (2018) Africa-Cordex Simulations Projection of Future Temperature, Precipitation, Frequency and Intensity Indices Over Mono Basin in West Africa. Journal of Earth Science & Climatic Change, 9, 1-12.
https://doi.org/10.4172/2157-7617.1000490
[12]  Lawin, A.E., Batablinlè, L., Celestin, M. and Hodabalo, K. (2018) Future Extremes Temperature: Trends and Changes Assessment over the Mono River Basin, Togo (West-Africa). Journal of Water Resource and Protection, 1, 82-98.
https://doi.org/10.4236/jwarp.2019.111006
[13]  D.I. Camara, M., Di edhiou, A., Sow, B.A., Diallo, M.D., Diatta, S. and Mbaye, I. (2013) Analyse de la pluie simulee par les mod_eles climatiques regionaux de CORDEX en Afrique de l’Ouest. Secheresse, 24, 14-28.
https://doi.org/10.1684/sec.2013.0375
[14]  Nikulin, G., Jones, C., Giorgi, F., Asrar, G., Büchner, M., van, M.E., Christensen, O.B., Déqué, M., Fernandez, J., Hänsler, A., van Meijgaard, E., Samuelsson, P. and Sylla, M.B. (2012) Precipitation Climatology in an Ensemble of CORDEX-Africa Regional Climate Simulations. Journal of Climate, 25, 6057-6078.
https://doi.org/10.1175/JCLI-D-11-00375.1
[15]  Laux, P. and Kunstmann, H. (2008) Predicting the Regional Onset of the Rainy Season in West Africa. International Journal of Climatology, 28, 329-342.
https://doi.org/10.1002/joc.1542
[16]  Klutse, N., Sylla, M., Diallo, I., Sarr, A. and Dosio (2016) Daily Characteristics of West African Summer Monsoon Precipitation in CORDEX Simulations. Theoretical and Applied Climatology, 123, 369-386.
https://doi.org/10.1007/s00704-014-1352-3
[17]  Amoussou, E., Tramblay, Y., Totin, V.S.H., Mahé, G. and Camberlin, P. (2014) Dynamique et modélisation des crues dans le bassin du Mono (Togo/Bénin). Hydrological Sciences Journal, 59, 2060-2071.
https://doi.org/10.1080/02626667.2013.871015
[18]  Hamdy, K.E., Ahmed, E.G., El-Hussainy, F., Hamid, R. and Beheary, M.M. (2006) Optimum Solar Flat-Plate Collector Slope: Case Study for Helwan, Egypt. Energy Conversion and Management, 47, 624-637.
https://doi.org/10.1016/j.enconman.2005.05.015
[19]  Khalil, S.A. and Aly, H.A.S. (2018) Comparative and Evaluate of Empirical Models for Estimation Global Solar Radiation in Al-Baha, KSA. Journal of Earth Science and Climatic Change, 9, 492.
https://doi.org/10.4172/2157-7617.1000492
[20]  New, M., Hewitson, B., Stephenson, D.B., Tsiga, A., Kruger, A., Manhique, A., Gomez, B., Coelho, C.A.S., Masisi, D.N., Kululanga, E., et al. (2006) Evidence of Trends in Daily Climate Extremes over Southern and West Africa. Journal of Geophysical Research, 111, D14102.
https://doi.org/10.1029/2005JD006289
[21]  Yazid, M. and Humphries, U. (2015) Regional Observed Trends in Daily Rainfall Indices of Extremes over the Indochina Peninsula from 1960 to 2007. Climate, 3, 168-192.
https://doi.org/10.3390/cli3010168
[22]  Soro, G.E., Noufé, D., Goula Bi, T.A. and Shorohou, B. (2016) Trend Analysis for Extreme Rainfall at Sub-Daily and Daily Timescales in Côte d’Ivoire. Climate, 4, 37.
https://doi.org/10.3390/cli4030037
[23]  Hountondji, Y.-C., De Longueville, F. and Ozer, P. (2011) Trends in Extreme Rainfall Events in Benin (West Africa), 1960-2000. Proceedings of the 1st International Conference on Energy, Environment and Climate Changes, Ho Chi Minh City, 26-27 August 2011.
http://hdl.handle.net/2268/96112
[24]  Zhang, X., Hogg, W.D. and Mekis, E. (2001) Spatial and Temporal Characteristics of Heavy Precipitation Events over Canada. American Meteorological Society, 14, 1923-1936.
https://doi.org/10.1175/1520-0442(2001)014<1923:SATCOH>2.0.CO;2
[25]  Tabari, H., Somee, B.S. and Zadeh, M.R. (2011) Testing for Long-Term Trends in Climatic Variables in Iran. Atmospheric Research, 100, 132-140.
https://doi.org/10.1016/j.atmosres.2011.01.005
[26]  Tabari, H. and Hosseinzadeh, P. (2011) Recent Trends of Mean Maximum and Minimum Air Temperatures in the Western Half of Iran. Meteorology and Atmospheric Physics, 111, 121-131.
https://doi.org/10.1007/s00703-011-0125-0
[27]  Some’e, B.S., Ezani, A. and Tabari, H. (2013) Spatiotemporal Trends of Aridity Index in Arid and Semi-Arid Regions of Iran. Theoretical and Applied Climatology, 111, 149-160.
https://doi.org/10.1007/s00704-012-0650-x
[28]  Valli, M., Sree, K.S. and Krishna, I.V.M. (2013) Analysis of Precipitation, Concentration Index and Rainfall Prediction in Various Agro-Climatic Zones of Andhra Pradesh, India. International Research Journal of Environmental Sciences, 2, 53-61.
[29]  Shi, W., Yu, X., Liao, W., Wang, Y. and Jia, B. (2013) Spatial and Temporal Variability of Daily Precipitation Concentration in the Lancang River Basin, China. Journal of Hydrology, 495, 197-207.
[30]  Hailu Birara, R., Pandey, P. and Mishra, S.K. (2018) Trend and Variability Analysis of Rainfall and Temperature. Journal of Water and Climate Change, 9, 555-569.
https://iwaponline.com/jwcc/article-pdf/9/3/555/484803/jwc0090555.pdf
[31]  Sylla, M.B., Giorgi, F. and Coppola, E. (2013) Uncertainties in Daily Rainfall over Africa: Assessment of Observation Products and Evaluation of a Regional Climate Model Simulation. International Journal of Climatology, 33, 1805-1817.
https://doi.org/10.1002/joc.3551
[32]  Kouakou, K.E., Kouadio, Z.A., Kouassi, F.W., Goula Bi, T.A. and Savane, I. (2014) Modelisation de la temperature et de la pluviometrie dans un contexte de changement climatique: Cas de l’Afrique de l’Ouest. Afrique Sciences, 10, 145-160.
[33]  Diallo, I., Giorgi, F., Deme, A., Tall, M., Mariotti, L., et al. (2016) Projected Changes of Summer Monsoon Extremes and Hydroclimatic Regimes over West Africa for the Twenty-First Century. Climate Dynamics, 49, 3931-3954.
https://doi.org/10.1007/s00382-016-3052-4
[34]  Tall, M., Sylla, M.B., Diallo, I., Pal, J.S. and Faye, A. (2016) Projected Impact of Climate Change in the Hydroclimatology. Theoretical and Applied Climatology, 129, 655-665.
https://doi.org/10.1007/s00704-016-1805-y
[35]  Dosio, A. and Panitz, H.-J. (2016) Climate Change Projections for CORDEX Africa with COSMO-CLM Regional Climate Model and Differences with the Driving Global Climate Models. Climate Dynamics, 46, 1599-1625.
https://doi.org/10.1007/s00382-015-2664-4
[36]  Powell, E.J. and Keim, B.D. (2015) Trends in Daily Temperature and Precipitation Extremes for the Southeastern United States: 1948-2012. Journal of Climate, 28, 1592-1612.
https://doi.org/10.1175/JCLI-D-14-00410.1
[37]  Suppiah, R. and Hennessy, K.J. (1990) Trend in Total Rainfall, Heavy Rain Events and Number of Dry Days in Australia. International Journal of Climatology, 10, 1141-1164.
[38]  Zhai, P.M., Zhang, X.B., Wan, H. and Pan, X.H. (2005) Trends in Total Precipitation and Frequency of Daily Precipitation Extremes over China. Journal of Climate, 18, 1096-1108.
https://doi.org/10.1175/JCLI-3318.1
[39]  Rajeevan, M., Bhate, J. and Jaswal, A.K. (2008) Analysis of Variability and Trends of Extreme Rainfall Events over India Using 104 Years of Gridded Daily Rainfall Data. Geophysical Research Letters, 35.
[40]  Diekkrüger, B., Diederich, M., Giertz, S., Höllermann, B., Kocher, A., Reichert, B., Steup, G. (2008) Water Availability and Water Demand under Global Change in Benin, West Africa. Global Change and Water Resources in West Africa the German-African GLOWA Projects, Bundesministerium fur Bildung und Forschung: Ouagadougou, Burkina Faso.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133