全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Bacterial Heavy Metal Resistance Genes and Bioremediation Potential

DOI: 10.4236/cmb.2019.91001, PP. 1-12

Keywords: Rhodobacter sphaeroides, Heavy Metal Tolerance Genes, Bioremediation

Full-Text   Cite this paper   Add to My Lib

Abstract:

There is a worldwide distribution of heavy metal pollution that can be managed with a bioremediation approach using microorganisms. Several bacterial species belonging to the Proteobacteria have been shown to tolerate heavy metal stress, including toxic salts of noblemetals. Rhodobacter sphaeroides, a model bacterium has previously been utilized for bioremediation studies. A bioinformatics approach was employed here to identify the distribution of genes associated with heavy metal tolerance among the sequenced bacterial genomes currently available on the NCBI database. The distribution of these genes among different groups of bacteria and the Cluster of Orthologous Groups (COGs) were further characterized. A total of 170,000 heavy metal related genes were identified across all bacterial species, with a majority of the genes found in Proteobacteria (46%) and Terrabacteria (39%). Analysis of COGs revealed that the majority of heavy metal related genes belong to metabolism (COG 3), including ionic transport, amino acid biosynthesis, and energy production.

References

[1]  Morris, C. (1992) Dictionary of Science and Technology. Academic Press, San Diego.
[2]  Jennings, D. (1993) Stress Tolerance of Fungi. Vol. 10. M. Dekker, New York.
[3]  Nies, D.H. (1999) Microbial Heavy Metal Resistance. Applied Microbiology Technology, 51, 730-750.
https://doi.org/10.1007/s002530051457
[4]  Oves, M., Saghir Khan, M., Zaidi, A. and Ahmad, E. (2012) Soil Contamination, Nutritive Value, and Human Health Risk Assessment of Heavy Metals: An Overview. Toxicity of Heavy Metals to Legumes and Bioremediation, Springer, Vienna, 1-27.
https://doi.org/10.1007/978-3-7091-0730-0_1
[5]  Spiegel, H. (2002) Trace Element Accumulation in Selected Bioindicators Exposed to Emissions along the Industrial Facilities of Danube Lowland. Turkish Journal of Chemistry, 26, 815-823.
[6]  Mielke, H. and Reagan, P. (1988) Soil as an Impact Pathway of Human Lead Exposure. Environmental Health Perspectives, 106, 217-229.
[7]  Facchinelli, A., Sacchi, E. and Mallen, L. (2001) Multivariate Statistical and GIS-Based Approach to Identify Heavy Metal Sources in Soils. Environment Pollution, 114, 313-324.
https://doi.org/10.1016/S0269-7491(00)00243-8
[8]  Solgi, E., Esmaili-Sari, A., Riyahi-Bakhtiari, A. and Hadipour, M. (2012) Soil Contamination of Metals in Three Industrial Estates, Arak, Iran. Bulletin of Environmental Contamination and Toxicology, 88, 634-638.
https://doi.org/10.1007/s00128-012-0553-7
[9]  Kido, S. (2013) Secondary Osteoporosis or Secondary Contributors to Bone Loss in Fracture. Bone Metabolism and Heavy Metals (Cadmium and Iron). Clinical Calcium, 23, 1299-1306.
[10]  Barbier, O., Jacquillet, G., Tauc, M., Cougnon, M. and Poujeol, P. (2005) Effect of Heavy Metals on, and Handling by, the Kidney. Nephron Physiology, 99, 105-110.
https://doi.org/10.1159/000083981
[11]  Clarkson, T. (1987) Metal Toxicity in the Central Nervous System. Environmental Health Perspectives, 75, 59-64.
https://doi.org/10.1289/ehp.877559
[12]  Jarup, L. (2003) Hazards of Heavy Metal Contamination. British Medical Bulletin, 68, 167-182.
https://doi.org/10.1093/bmb/ldg032
[13]  Rokadia, H. and Agarwal, S. (2013) Serum Heavy Metals and Obstructive Lung Disease: Results from the National Health and Nutrition Examination Survey. Chest, 143, 388-397.
https://doi.org/10.1378/chest.12-0595
[14]  Crannell, B., Eighmy, T., Krzanowski, J., Eusden, J., Shaw, E. and Francis, C. (2000) Heavy Metal Stabilization in Municipal Solid Waste Combustion Bottom Ash Using Soluble Phosphate. Waste Management, 20, 135-148.
https://doi.org/10.1016/S0956-053X(99)00312-8
[15]  Vatamaniuk, O., Mari, S., Lu, Y. and Rea, P. (2000) Mechanism of Heavy Metal Ion Activation of Phytochelatin (PC) Synthase. The Journal of Biological Chemistry, 275, 31451-31459.
https://doi.org/10.1074/jbc.M002997200
[16]  Rosen, B. (1996) Bacterial Resistance to Heavy Metals and Metalloids. Biological Inorganic Chemistry, 1, 273-277.
https://doi.org/10.1007/s007750050053
[17]  Tan, W., Liu, F., Feng, X., Huang, Q. and Li, X. (2005) Adsorption and Redox Reactions of Heavy Metals on Fe-Mn Nodules from Chinese Soils. Journal of Colloid and Interface Science, 284, 600-605.
https://doi.org/10.1016/j.jcis.2004.10.049
[18]  Jaiswal, S. (2011) Role of Rhizobacteria in Reduction of Arsenic Uptake by Plants: A Review. Journal of Bioremediation and Biodegradation, 2, 126.
https://doi.org/10.4172/2155-6199.1000126
[19]  Collins, F., Green, E., Guttmacher, A. and Guyer, M. (2003) A Vision for the Future of Genomics Research. Nature, 422, 835-847.
https://doi.org/10.1038/nature01626
[20]  https://www.ncbi.nlm.nih.gov/genome/
[21]  Galperin, M., Makarova, K., Wolf, Y. and Koonin, E. (2015) Expanded Microbial Genome Coverage and Improved Protein Family Annotation in the COG Database. Nucleic Acids Research, 43, D261-D269.
https://doi.org/10.1093/nar/gku1223
[22]  Huang, D., Sherman, B. and Lempicki, R. (2009) Bioinformatics Enrichment Tools: Paths toward the Comprehensive Functional Analysis of Large Gene Lists. Nucleic Acids Research, 37, 1-13.
[23]  Battistuzzi, F. and Hedges, S. (2009) A Major Clade of Prokaryotes with Ancient Adaptations to Life on Land. Molecular Biology Evolution, 26, 335-343.
https://doi.org/10.1093/molbev/msn247
[24]  Margesin, R., Plaza, G. and Kasenbacher, S. (2011) Characterization of Bacterial Communities at Heavy-Metal-Contaminated Sites. Chemosphere, 82, 1583-1588.
https://doi.org/10.1016/j.chemosphere.2010.11.056
[25]  O’Gara, J., Gomelsky, M. and Kaplan, S. (1997) Identification and Molecular Genetic Analysis of Multiple Loci Contributing to High-Level Tellurite Resistance in Rhodobacter sphaeroides 2.4.1. Applied and Environmental Microbiology, 63, 4713-4720.
[26]  Checa, S., Espariz, M., Audero, M., Botta, P., Spinelli, S. and Soncini, F. (2007) Bacterial Sensing of a Resistance to Gold Salts. Molecular Microbiology, 63, 1307-1318.
https://doi.org/10.1111/j.1365-2958.2007.05590.x
[27]  https://www.ncbi.nlm.nih.gov/COG/
[28]  Giotta, L., Agostiano, A., Italiano, F., Milano, F. and Trotta, M. (2006) Heavy Metal Ion Influence on the Photosynthetic Growth of Rhodobacter sphaeroides. Chemosphere, 62, 1490-1499.
https://doi.org/10.1016/j.chemosphere.2005.06.014
[29]  Rademacher, C., Hoffman, M., Lackmann, J., Moser, R., Pfander, Y., Leimkühler, S., Narberhaus, F. and Masepohl, B. (2012) Tellurite Resistance Gene trgB Confers Copper Tolerance to Rhodobacter capuslatus. BioMetals, 25, 995-1008.
https://doi.org/10.1007/s10534-012-9566-2
[30]  Volpicella, M., Costanza, A., Palumbo, O., Italiano, F., Claudia, L., Placido, A., Picardi, E., Carella, M., Trotta, M. and Ceci, L. (2014) Rhodobacter sphaeroides Adaptation to High Concentrations of Cobalt Ions Requires Energetic Metabolism Changes. Microbial Ecology, 88, 345-357.
https://doi.org/10.1111/1574-6941.12303
[31]  Coombs, J. and Barkay, T. (2005) New Findings on Evolution of Metal Homeostasis Genes: Evidence from Comparative Genome Analysis of Bacteria and Archaea. Applied and Environmental Microbiology, 71, 7083-7091.
https://doi.org/10.1128/AEM.71.11.7083-7091.2005
[32]  Valencia, E., Braz, V., Guzzo, C. and Marques, M. (2013) Two RND Proteins Involved in Heavy Metal Efflux in Caulobacter crescentus Belong to Separate Clusters within Proteobacteria. BMC Microbiology, 13, 79.
https://doi.org/10.1186/1471-2180-13-79
[33]  Hernández-Montes, G., Argüello, J. and Valderrama, B. (2012) Evolution and Diversity of Periplasmic Proteins Involved in Copper Homeostasis in Gamma Proteobacteria. BMC Microbiology, 12, 249.
https://doi.org/10.1186/1471-2180-12-249

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133