All Title Author
Keywords Abstract

Publish in OALib Journal
ISSN: 2333-9721
APC: Only $99


Relative Articles


Super-Hydrides of Lanthanum and Yttrium: On Optimal Conditions for Achieving near Room Temperature Superconductivity

DOI: 10.4236/wjcmp.2019.91002, PP. 22-36

Keywords: Superconductivity, Super-Hydride, Clathrate, LaH10, YH10, Faujasite, High Pressure, Optimum of Pairing Charge Carriers, Slab Width, Ionic Substitution, Epitaxial Growth, Diamond Substrate, Fractality

Full-Text   Cite this paper   Add to My Lib


Recently, many seminal papers deal with the syntheses, stability and superconducting properties of super-hydrides like LaH10 or YH10 under high pressure, reporting critical temperatures near room temperature. In the first run one will assume that the involved metal atoms contribute a number of 3 electrons to the pairing pool corresponding to their valence. However, another possibility may be that the cationic valence is somewhat smaller, for instance only 2.29, resulting in a nominal electron number per cation of σ0 = 0.229 ≈ 3/13 instead of 0.3. Then, we will have a numerical equality to the optimum hole number in the cuprate high-Tc superconductors, a number that reflects the fractal nature of electronic response in superconductors. However, if one still keeps up the oxidation state of +3 of lanthanum, one will need 13 hydrogen atoms to match the optimum σ0. Such composition may be found at the phase boundary between the observed LaH10 and LaH16 phases. Partial ionic replacement is suggested to shift the super-hydride composition into the σ0 optimum. Micro-structural phenomena such as multiple twinning and ferroelastic behavior as observed with cuprates may also influence the superconductivity of super-hydrides. Finally, epitaxial growth of super-hydrides onto a specially cut diamond substrate is proposed.


[1]  Semenok, D.V., Kruglov, I.A., Kvashnin, A.G. and Oganov, A.R. (2018) On Distribution of Superconductivity in Metal Hydrides. arXiv: 1806.00865 [cond-mat.supr.con], 1-19, S1-S26.
[2]  Drozdov, A.P., Kong, P.P., Minkov, V.S., Besedin, S.P., Kuzovnikov, M.A., Mozaffari, S., Balicas, L., Balakirev, F., Graf, D., Pragapenka, V.B., Greenberg, E., Knyazev, D.A., Tkacz, M. and Eremets, M.I. (2018) Superconductivity at 250 K in Lanthanum Hydride under High Pressures. arXiv: 1812.01561v1 [cond-mat.supwe-con], 1-16.
[3]  Geballe, Z.M., Liu, H., Mishra, A.K., Ahart, M., Somayazulu, M., Meng, Y., Baldini, M. and Hemley, R.J. (2018) Synthesis and Stability of Lanthanum Superhydrides. Angewandte Chemie International Edition, 57, 688-692.
[4]  Liu, H., Naumov, I.I., Geballe, Z.M., Somayazulu, M., Tse, J.S. and Hemley, R.J. (2018) Dynamics and Superconductivity in Compressed Lanthanum Superhydride. Physical Review, B98, Article ID: 100102.
[5]  Ashcroft, N.W. (1968) Metallic Hydrogen: A High-Temperature Superconductor. Physical Review Letters, 21, 1748-1749.
[6]  Duan, D.F., Liu, Y.X., Tian, F.B., Li, D., Huang, X.L., Zhao, Z.L., Yu, H.Y., Liu, B.B., Tian, W.J. and Cui, T. (2014) Pressure-Induced Metallization of Dense (H2S)2H2 with High-Tc Superconductivity. Scientific Reports, 4, Article No. 6968.
[7]  Drozdov, A.P., Eremets, M.L., Troyan, I.A., Ksenofontov, V. and Shylin, S.I. (2015) Conventional Superconductivity at 203 K at High Pressure. Nature, 525, 73-76.
[8]  Drozdov, A.P., Eremets, M.I. and Troyan, I.A. (2014) Conventional Superconductivity at 190 K at High Pressure.
[9]  Otto, H.H. (2015) Email Communication with Mikhail Eremets.
[10]  Otto, H.H. (2016) A Different Approach to High-Tc Superconductivity: Indication of Filamentary-Chaotic Conductance and Possible Routes to Superconductivity above Room Temperature. World Journal of Condensed Matter Physics, 6, 244-260.
[11]  Harshman, D.R., Fiory, A.T. and Dow, J.D. (2011) Theory of High-Tc Superconductivity: Transition Temperatures. Journal of Physics: Condensed Matter, 23, Article ID: 295701.
[12]  Hardy, L. (1993) Nonlocality for Two Particles without Inequalities for Almost All Entangled States. Physical Review Letters, 71, 1665-1668.
[13]  Otto, H.H. (2018) Reciprocity Relation between the Mass Constituents of the Universe and Hardy’s Quantum Entanglement Probability. World Journal of Condensed Matter Physics, 8, 30-35.
[14]  Kohsaka, Y., Taylor, C., Fujita, K., Schmidt, A., Lupien, C., Hanaguri, T., Azuma, M., Takano, M., Eisaki, H., Takagi, H., Uchida, S. and Davis, J.C. (2007) An Intrinsic Bond-Centered Electronic Glass with Unidirectional Domains in Underdopedcuprates. Science, 315, 1380-1385.
[15]  Phillabaum, B., Carlson, E.W. and Dahmen, K.A. (2012) Spatial Complexity Due to Bulk Electronic Nematicity in a Superconducting Underdoped Cuprate. Nature Communications, Article No. 915.
[16]  Sachdev, S. (2014) Quantum Entanglement & Superconductivity. Public Lecture at the Perimeter Institute, Waterloo, ON.
[17]  Ram, R.S. and Bernath, P.F. (1996) Fourier Transform Emission Spectroscopy of New Infrared System of LaH and LaD. Journal of Chemical Physics, 104, 6444-6451.
[18]  Rosi, M. and Bauschlicher Jr., C.W. (1990) On the bonding of La+ and La2+ to C2H2, C2H4, and C3H6. Chemical Physics Letters, 166, 189-194.
[19]  Kruglov, I.A., Semenok, D.V., Szcesniak, R., Esfahani, M.M.D., Kvashnin, A.G. and Oganov, A.R. (2018) Superconductivity in LaH10: A New Twist of the Story. arXiv: 1810.01113, 1-28.
[20]  Otto, H.H. (2018) Cauchy Functions Compared to the Gaussian for X-Ray Powder Diffraction Line Profile Fitting: An Exercise.
[21]  McMahon, J.M. and Ceperley, D. (2011) High-Temperature Superconductivity in Atomic Metallic Hydrogen. Physical Review B, 84, 144515-144523.
[22]  Kim, D.J., Hyun, S.H. and Kim, S.G. (1994) Effective Ionic Radius of Y3+ Determined from Lattice Parameters of Fluorite-Type HfO2 and ZrO2 Solid Solutions. Journal of the American Ceramic Society, 77, 597-599.
[23]  Rudman, P.S. (1965) Lattice Parameters of Tantalum-Osmium Alloys. Journal of the Less Common Metals, 9, 77-79.
[24]  Fujihisa, H., Sidorov, V.A., Takemura, K., Kanda, H. and Stishov, S.M. (1996) Pressure Dependence of the Lattice Constants of Diamond: Isotopic Effects. Journal of Experimental and Theoretical Physics Letters, 63, 83-88.
[25]  Otto, H.H. (2016) Perovskite Twin Solar Device with Estimated 50% Bifacial PCE Potential and New Material Options., 1-8.
[26]  Mitrano, M., Cantaluppi, A., Nicoletti, D., Kaiser, S., Peruchi, A., Lupi, S., Pietro, P., Pontiroli, D., Ricco, M., Clark, S.R., Jaksch, D. and Cavalleri, A. (2015) An Optically Stimulated Superconducting-Like Phase in K3C60 far above Equilibrium Tc. arXiv: 1505.04529v1, 1-40.
[27]  Otto, H.H. (2015) Modeling of a Cubic Antiferromagnetic Cuprate Super-Cage. World Journal of Condensed Matter Physics, 5, 160-178.
[28]  Castillo, R., Schnelle, W., Bobnar, M., Burkhardt, U., Bohme, B., Baitinger, M., Schwarz, U. and Grin, Y. (2015) The Clathrate Ba8−xSi46 Revisited: Preparation Routes, Electrical and Thermal Transport Properties. Journal of Inorganic and General Chemistry, 641, 206-213.
[29]  Djurek, D., Pretser, M., Knezovic, S., Drobac, D., Milat, O., Babic, E., Brnicevic, N., Furic, K., Medunic, Z. and Vukelja, T. (1987) Low Resistance State up to 210 K in a Mixed Compound Y-Ba-Cu-O. Physics Letters A, 123, 481-484.
[30]  Schonberger, R., Otto, H.H., Brunner, B. and Renk, K.F. (1991) Evidence for Filamentary Superconductivity up to 220 K in Oriented Multiphase Y-Ba-Cu-O Thin Films. Physica C, 173, 159-162.
[31]  Azzoni, C.B., Paravicini, G.B.A., Samoggia, G., Ferloni, P. and Parmigiani, F. (1990) Electric Instability in CuO1−x: Possible Correlations with the CuO-Based High Temperature Superconductors. Zeitschrift für Naturforschung A, 45, 790-794.
[32]  Osipov, V.V., Kochev, I.V. and Naumov, S.V. (2010) Giant Electric Conductivity at the CuO-Cu Interface: HTSL-Like Temperature Variations. Journal of Experimental and Theoretical Physics, 93, 1082-1090.
[33]  Euler, L. (1752) Elementa Doctrine Solidorum. Novi Commentarii Academiae Scientiarum Imperialis Petropolitanae, 4, 109-160.
[34]  Heil, C., di Cataldo, S., Bachelet, G.B. and Boeri, L. (2019) Superconductivity in Sodalite-Like Yttrium Hydride Clathrates. arXiv: 1901.04001v1 [cond-mat.supr.con], 1-5.
[35]  Otto, H.H. (2008) Family Tree of Perovskite-Related Superconductors. arXiv: 0810.3501v1 [cond-mat.supr-con], 1-8.


comments powered by Disqus

Contact Us


WhatsApp +8615387084133

WeChat 1538708413