In this study, Density Functional Theory including a dispersion correction is employed to model and analyze the structural, electronic and local reactivity of the (100) surface of felodipine. The surface energy calculated at the Generalized Gradient Approximation (GGA) level, along with
plane waves as basis set and ultrasoft pseudopotentials, shows that the (100) surface is the most stable as compared to the (010) and (110) ones. In particular, we have focused on performing a quantitative study of the reactivity of the surface by means of the Fukui function and through the HOMO and LUMO populations. Our results can be related to some applications in the
pharmaceutical chemistry of this compound.
References
[1]
Parr, R.G., Donnelly, R.A., Levy, M. and Palke, W.E. (1978) Electronegativity: The Density Functional Viewpoint. Journal of Chemical Physics, 68, 3801.
https://doi.org/10.1063/1.436185
[2]
Parr, R.G. and Pearson, R.G. (1983) Absolute Hardness: Companion Parameter to Absolute Electronegativity. Journal of the American Chemical Society, 105, 7512-7516. https://doi.org/10.1021/ja00364a005
[3]
Liu, S.B. and Chattaraj, P.K. (2009) Electrophilicity. In: Chattaraj, P.K., Ed., Chemical Reactivity Theory: A Density Functional View, Taylor and Francis, Boca Raton, 179. https://doi.org/10.1201/9781420065442.ch13
[4]
Chattaraj, P.K., Sarkar, U. and Roy, D.R. (2006) Electrophilicity Index. Chemical Reviews, 106, 2065-2091. https://doi.org/10.1021/cr040109f
[5]
Ayers, P.W. and Levy, M. (2000) Perspective on “Density Functional Approach to the Frontier-Electron Theory of Chemical Reactivity”. Theoretical Chemistry Accounts, 103, 353-360. https://doi.org/10.1007/s002149900093
[6]
Perdew, J.P., Parr, R.G., Levy, M. and Balduz, J.L. (1982) Density-Functional Theory for Fractional Particle Number: Derivative Discontinuities of the Energy. Physical Review Letters, 49, 1691-1694. https://doi.org/10.1103/PhysRevLett.49.1691
[7]
Ayers, P.W. (2008) The Dependence on and Continuity of the Energy and Other Molecular Properties with Respect to the Number of Electrons. Journal of Mathematical Chemistry, 43, 285-303. https://doi.org/10.1007/s10910-006-9195-5
[8]
Surov, A.O., Solanko, K.A., Bond, A.D., Perlovich, G.L. and Bauer-Brand, A. (2012) Crystallization and Polymorphism of Felodipine. Crystal Growth & Design, 12, 4022-4030. https://doi.org/10.1021/cg300501u
[9]
Lou, B., Dan, B. and Sitaram, P.V. (2009) Polymorph Control of Felodipine Form II in an Attempted Cocrystallization. Crystal Growth & Design, 9, 1254-1257.
https://doi.org/10.1021/cg8009749
[10]
Fossheim, R. (1986) Crystal Structure of the Dihydropyridine Calcium Antagonist Felodipine. Dihydropyridine Binding Prerequisites Assessed from Crystallographic Data. Medicinal Chemistry, 29, 305-307. https://doi.org/10.1021/jm00152a023
[11]
Byrn, S.R., Sutton, P.A., Tobias, B., Frye, J. and Main, P. (1988) Crystal Structure, Solid-State NMR Spectra, and Oxygen Reactivity of Five Crystal Forms of Prednisolone Tert-Butylacetate. Journal of the American Chemical Society, 101, 1609-1614.
https://doi.org/10.1021/ja00213a039
[12]
Chen, X.M., Morris, K.R., Griesser, U.J., Byrn, S.R. and Stowell, J.G. (2002) Reactivity Differences of Indomethacin Solid Forms with Ammonia Gas. Journal of the American Chemical Society, 124, 15012-15019. https://doi.org/10.1021/ja017662o
[13]
Chen, X.M., Li, T.L., Morris, K.R. and Byrn, S.R. (2002) Crystal Packing and Chemical Reactivity of Two Polymorphs of Flufenamic Acid with Ammonia. Molecular Crystals and Liquid Crystals, 381, 121-131. https://doi.org/10.1080/713738743
[14]
Shaoxin, F. and Li, T.L. (2005) Understanding Solid-State Reactions of Organic Crystals with Density Functional Theory-Based Concepts. Journal of Physical Chemistry A, 109, 7258-7263. https://doi.org/10.1021/jp0519666
[15]
Paul, I.C. and Curtin, D.Y. (1973) Thermally Induced Organic Reactions in the Solid State. Accounts of Chemical Research, 6, 217-225.
https://doi.org/10.1021/ar50067a001
[16]
Paul, I.C. and Curtin, D.Y. (1975) Reactions of Organ Crystals with Gases. Science, 187, 19-26. https://doi.org/10.1126/science.187.4171.19
[17]
Luty, T., Ordon, P. and Eckhardt, C.J.J. (2002) A Model for Mechanochemical Transformations: Applications to Molecular Hardness, Instabilities, and Shock Initiation of Reaction. Chemical Physics, 117, 1775. https://doi.org/10.1063/1.1485968
[18]
Ruiz, V.G., Liu, W., Zojer, E., Scheffler, M. and Tkatchenko, A. (2012) Density-Functional Theory with Screened van der Waals Interactions for the Modeling of Hybrid Inorganic-Organic Systems. Physical Review Letters, 108, Article ID: 146103. https://doi.org/10.1103/PhysRevLett.108.146103
[19]
Klimeš, J. and Michaelides, A. (2012) Perspective: Advances and Challenges in Treating van der Waals Dispersion Forces in Density Functional Theory. The Journal of Chemical Physics, 137, Article ID: 120901. https://doi.org/10.1063/1.4754130
[20]
Nørskov, J.K., Abild-Pedersen, F., Studt, F. and Bligaard, T. (2011) Density Functional Theory in Surface Chemistry and Catalysis. PNAS, 108, 937-943.
https://doi.org/10.1073/pnas.1006652108
[21]
Cohen, A.J., Mori-Sánchez, P. and Yang, W. (2012) Challenges for Density Functional Theory. Chemical Reviews, 112, 289-320. https://doi.org/10.1021/cr200107z
[22]
Burke, K. (2012) Perspective on Density Functional Theory. The Journal of Chemical Physics, 136, Article ID: 150901. https://doi.org/10.1063/1.4704546
[23]
Katoh, M., Nakajima, M., Shimada, N., Yamazaki, H. and Yokoi, T. (2000) Inhibition of Human Cytochrome P450 Enzymes by 1,4-Dihydropyridine Calcium Antagonists: Prediction of in Vivo Drug-Drug Interactions. European Journal of Clinical Pharmacology, 55, 843-852. https://doi.org/10.1007/s002280050706
[24]
Rodríguez Arcas, M.J., García-Jiménez, E., Martínez-Martínez, F. and Conesa-Zamora, P. (2011) Role of CYP450 in Pharmacokinetics and Pharmacogenetics of Antihypertensive Drugs. Farmacia Hospitalaria, 35, 84-92.
https://doi.org/10.1016/j.farma.2010.05.006
[25]
Greene, N. (2002) Computer Systems for the Prediction of Toxicity: An Update. Advanced Drug Delivery Reviews, 54, 417-431.
https://doi.org/10.1016/S0169-409X(02)00012-1
[26]
Langowski, J. and Long, A. (2002) Anthony Long, Computer Systems for the Prediction of Xenobiotic Metabolism. Advanced Drug Delivery Reviews, 54, 407-415.
https://doi.org/10.1016/S0169-409X(02)00011-X
[27]
Higgins, L., Korzekwa, K.R., Rao, S., Shou, M. and Jones, J.P. (2001) An Assessment of the Reaction Energetics for Cytochrome P450-Mediated Reactions. Archives of Biochemistry and Biophysics, 385, 220-230. https://doi.org/10.1006/abbi.2000.2147
[28]
Singh, S.B., Shen, L.Q., Walker, M.J. and Sheridan, R.P.J. (2003) A Model for Predicting Likely Sites of CYP3A4-Mediated Metabolism on Drug-Like Molecules. Journal of Medicinal Chemistry, 46, 1330-1336. https://doi.org/10.1021/jm020400s
[29]
Shaik, S., Cohen, S., de Visser, S.P., Sharma, P.K., Kumar, D., Kozuch, S., Ogliaro, F. and Danovich, D. (2004) The “Rebound Controversy”: An Overview and Theoretical Modeling of the Rebound Step in C-H Hydroxylation by Cytochrome P450. European Journal of Inorganic Chemistry, 2004, 207-226.
https://doi.org/10.1002/ejic.200300448
[30]
Schöneboom, J.C., Lin, H., Reuter, N., Thiel, W., Cohen, S., Ogliaro, F. and Shaik, S. (2002) The Elusive Oxidant Species of Cytochrome P450 Enzymes: Characterization by Combined Quantum Mechanical/Molecular Mechanical (QM/MM) Calculations. Journal of the American Chemical Society, 124, 8142-8151.
https://doi.org/10.1021/ja026279w
[31]
Schöneboom, J.C., Cohen, S., Lin, H., Shaik, S. and Thiel, W. (2004) Quantum Mechanical/Molecular Mechanical Investigation of the Mechanism of C-H Hydroxylation of Camphor by Cytochrome P450cam: Theory Supports a Two-State Rebound Mechanism. Journal of the American Chemical Society, 126, 4017-4034.
https://doi.org/10.1021/ja039847w
[32]
Groves, J.T. and Watanabe, Y. (1988) Reactive Iron Porphyrin Derivatives Related to the Catalytic Cycles of Cytochrome P-450 and Peroxidase. Studies of the Mechanism of Oxygen Activation. Journal of the American Chemical Society, 110, 8443-8452. https://doi.org/10.1021/ja00233a021
[33]
Wang, S.X., Sutfin, T.A., Bäärnhielm, C. and Regårdh, C.G. (1989) Contribution of the Intestine to the First-Pass Metabolism of Felodipine in the Rat. Journal of Pharmacology and Experimental Therapeutics, 250, 632-636.
[34]
Beck, M.E. (2005) Do Fukui Function Maxima Relate to Sites of Metabolism? A Critical Case Study. Journal of Chemical Information and Modeling, 45, 273-282.
https://doi.org/10.1021/ci049687n
[35]
Parr, R.G. and Yang, W. (1989) Density Functional Theory of Atoms and Molecules. Oxford University Press, New York, 70.
[36]
Hohenberg, P. and Kohn, W. (1964) Inhomogeneous Electron Gas. Physical Review B, 136, 864-871. https://doi.org/10.1103/PhysRev.136.B864
[37]
De Proft, F. and Geerlings, P. (1997) Calculation of Ionization Energies, Electron Affinities, Electronegativities, and Hardnesses Using Density Functional Methods. The Journal of Chemical Physics, 106, 3270-3279. https://doi.org/10.1063/1.473796
[38]
Kohn, W. and Sham, L. (1965) Self-Consistent Equations Including Exchange and Correlation Effects. Physical Review A, 140, 1133-1138.
https://doi.org/10.1103/PhysRev.140.A1133
[39]
Parr, R.G., Szentpály, L. and Liu, S. (1999) Electrophilicity Index. Journal of the American Chemical Society, 121, 1922-1924. https://doi.org/10.1021/ja983494x
[40]
Ayers, R.G. and Parr, P. (2000) Variational Principles for Describing Chemical Reactions: The Fukui Function and Chemical Hardness Revisited. Journal of the American Chemical Society, 122, 2010-2018. https://doi.org/10.1021/ja9924039
[41]
Parr, R.G. and Yang, W. (1984) Density Functional Approach to the Frontier-Electron Theory of Chemical Reactivity. Journal of the American Chemical Society, 106, 4049-4050.
[42]
Yang, R.G. and Parr, W. (1985) Hardness, Softness, and the Fukui Function in the Electronic Theory of Metals and Catalysis. Proceedings of the National Academy of Sciences, 82, 6723-6726. https://doi.org/10.1073/pnas.82.20.6723
[43]
Yonezawa, Y., Shingu, H. and Fukui, K. (1952) A Molecular Orbital Theory of Reactivity in Aromatic Hydrocarbons. The Journal of Chemical Physics, 20, 722-726. https://doi.org/10.1063/1.1700523
[44]
Fukui, K. (1982) Role of Frontier Orbitals in Chemical Reactions. Science, 218, 747-754. https://doi.org/10.1126/science.218.4574.747
[45]
Contreras, R.R., Fuentealba, P., Galván, M. and Pérez, P. (1999) A Direct Evaluation of Regional Fukui Functions in Molecules. Chemical Physics Letters, 304, 405-413.
https://doi.org/10.1016/S0009-2614(99)00325-5
Padmanabhan, J., Parthasarathi, R., Sarkar, U., Subramanian, V. and Chattaraj, P.K. (2004) Effect of Solvation on the Condensed Fukui Function and the Generalized Philicity Index. Chemical Physics Letters, 383, 122-128.
https://doi.org/10.1016/j.cplett.2003.11.013
[48]
Perdew, J.P. and Zunger, A. (1981) Self-Interaction Correction to Density-Functional Approximations for Many-Electron Systems. Physical Review B, 23, 5048-5079. https://doi.org/10.1103/PhysRevB.23.5048
[49]
Grimme, S. (2006) Semiempirical GGA-Type Density Functional Constructed with a Long-Range Dispersion Correction. Journal of Computational Chemistry, 27, 1787-1799. https://doi.org/10.1002/jcc.20495
[50]
Jurecka, P., Cerny, J., Hobza, P. and Salahub, D.R. (2007) Density Functional Theory Augmented with an Empirical Dispersion Term. Interaction Energies and Geometries of 80 Noncovalent Complexes Compared with ab Initio Quantum Mechanics Calculations. Journal of Computational Chemistry, 28, 555-569.
https://doi.org/10.1002/jcc.20570
[51]
Ortmann, F., Bechstedt, F. and Schmidt, W.G. (2006) Semiempirical van der Waals Correction to the Density Functional Description of Solids and Molecular Structures. Physical Review B, 73, Article ID: 205101.
https://doi.org/10.1103/PhysRevB.73.205101
[52]
Perdew, J.P., Burke, K. and Ernzerhof, M. (1996) Generalized Gradient Approximation Made Simple. Physical Review Letters, 77, 3865-3868.
https://doi.org/10.1103/PhysRevLett.77.3865
[53]
Vanderbilt, D. (1990) Soft Self-Consistent Pseudopotentials in a Generalized Eigenvalue Formalism. Physical Review B, 41, 7892-7895.
https://doi.org/10.1103/PhysRevB.41.7892