全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Comparison of Classical Method, Extension Principle and α-Cuts and Interval Arithmetic Method in Solving System of Fuzzy Linear Equations

DOI: 10.4236/ajcm.2019.91001, PP. 1-24

Keywords: Fuzzy Set, Classical Solution, Extension Principle, α-Cut and Interval Arithmetic Method

Full-Text   Cite this paper   Add to My Lib

Abstract:

The system of linear equations plays a vital role in real life problems such as optimization, economics, and engineering. The parameters of the system of linear equations are modeled by taking the experimental or observation data. So the parameters of the system actually contain uncertainty rather than the crisp one. The uncertainties may be considered in term of interval or fuzzy numbers. In this paper, a detailed study of three solution techniques namely Classical Method, Extension Principle method and α-cuts and interval Arithmetic Method to solve the system of fuzzy linear equations has been done. Appropriate applications are given to illustrate each technique. Then we discuss the comparison of the different methods numerically and graphically.

References

[1]  Moore, R.E. (1979) Methods and Applications of Interval Analysis. SIAM, Philadelphia.
https://doi.org/10.1137/1.9781611970906
[2]  Allahviranloo, T., Salahshour, S., Homayoun-nejad, M. and Baleanu, D. (2013) General Solutions of Fully Fuzzy Linear System. General Solutions of Fully Fuzzy Linear System, 2013, Article ID: 593274.
https://doi.org/10.1155/2013/593274
[3]  Friedman, M., Ma, M. and Kandel, A. (1998) Fuzzy Linear Systems. Fuzzy Sets and Systems, 96, 201-209.
https://doi.org/10.1016/S0165-0114(96)00270-9
[4]  Allahviranloo, T. (2004) Numerical Methods for Fuzzy System of Linear Equations. Applied Mathematics and Computation, 155, 493-502.
https://doi.org/10.1016/S0096-3003(03)00793-8
[5]  Allahviranloo, T. (2005) Successive over Relaxation Iterative Method for a Fuzzy System of Linear Equations. Applied Mathematics and Computation, 162, 189-196.
https://doi.org/10.1016/j.amc.2003.12.085
[6]  Allahviranloo, T. (2005) The Adomian Decomposition Method for a Fuzzy System of Linear Equations. Applied Mathematics and Computation, 163, 553-563.
https://doi.org/10.1016/j.amc.2004.02.020
[7]  Allahviranloo, T., Ahmady, E., Ahmady, N. and Shams Alketaby, Kh. (2006) Block Jacobi Two-Stage Method with Gauss-Sidel Inner Iterations for Fuzzy System of Linear Equations. Applied Mathematics and Computation, 175, 1217-1228.
https://doi.org/10.1016/j.amc.2005.08.047
[8]  Dehghan, M., Hashemi, B. and Ghatee, M. (2007) Solution of the Fully Fuzzy Linear Systems Using Iterative Techniques. Chaos Solutions and Fractals, 34, 316-336.
https://doi.org/10.1016/j.chaos.2006.03.085
[9]  Dehghan, M. and Hashemi, B. (2006) Solution of the Fully Fuzzy Linear Systems Using the Decomposition Procedure. Applied Mathematics and Computation, 182, 1568-1580.
https://doi.org/10.1016/j.amc.2006.05.043
[10]  Ming, M., Friedman, M. and Kandel, A. (1997) General Fuzzy Least Squares. Fuzzy Sets and Systems, 88, 107-118.
https://doi.org/10.1016/S0165-0114(96)00051-6
[11]  Klir, G.J. (2013) Lotfi Zadeh, Fuzzy Sets, and I: A Personal Odyssey. In: Seising R., Trillas, E., Moraga, C. and Termini, S., Eds., On Fuzziness. Studies in Fuzziness and Soft Computing, Vol. 298, Springer, Berlin, Heidelberg.
[12]  Buckley, J.J. (1992) Solving Fuzzy Equations. Fuzzy Sets and Systems, 50, 1-14.
https://doi.org/10.1016/0165-0114(92)90199-E

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133