In the present paper, we find a condition for the two-dimensional Finsler space with a special (α, β)-metric L(α, β)=α+α2/β to be a Berwald space. Also we have proved that, if the two-dimensional Finsler space with above metric is a Landsberg space, then it is a Berwald space.
References
[1]
Bacso, S. and Matsumoto, M. (1996) Reduction Theorems of Certain Landsberg Spaces to Berwald Spaces. Publicationes Mathematicae Debrecen, 48, 357-366.
[2]
Matsumoto, M. (1986) Foundations of Finsler Geometry and Finsler Spaces. Kaiseisha Press, Japan, 520.
[3]
Matsumoto, M. (1991) The Berwald Connection of Finsler with an -Metric. Tensor N. S., 50, 18-21.
[4]
Hashiguchi, M., Hojo, S. and Matsumoto, M. (1996) Landsberg Spaces of Dimension Two with -Metric. Tensor N. S., 57, 145-153.
[5]
Bacso, S. and Matsumoto, M. (1994) Projective Change Finsler Space with -Metrics. IBIBD, 55, 252-257.
[6]
Shibata, C., Shimada, H., Azuma, M. and Yasuda, H. (1977) On Finsler Spaces with Randers Metric. Tensor N. S., 31, 252-257.
[7]
Kitayama, M., Azuma, M. and Matsumoto, M. (1995) On Finsler Spaces with -Metric, Regularity, Geodesics and Main Scalars. Journal of Hokkaido University of Education Section II A, 46, 1-10.