This paper presented a new Floquet analysis used to calculate the radiation for 1-D and 2-D coupled periodic antenna systems. In this way, an accurate evaluation of mutual coupling can be proven by using a new mutual interaction expression that was based on Fourier analysis. Then, this work indicated how Floquet analysis can be used to study a finite array with uniform amplitude and linear phase distribution in both x and y directions. To modelize the proposed structures, two formulations were given in a spectral and spatial domain, where the Moment (MoM) method combined with a generalized equivalent circuit (GEC) method was applied. Radiation pattern of coupled periodic antenna was shown by varying many parameters, such as frequencies, distance and Floquet states. The 3-D radiation beam of the coupled antenna array was analyzed and compared in several steering angles θs and coupling values dx. The simulation of this structure demonstrated that directivity decreased at higher coupling values. The secondary lobs in the antenna radiation pattern affected the main lobe gain by energy dispersal and considerable increasing of side lobe level (SLL) may be achieved. Therefore, the sweeping of the radiation beam in several steering directions affected the electromagnetic performance of the antenna system: the directivity at the steering angle θs = π⁄3 was more damaged and had 19.99 dB while the second at θs = 0 had about 35.11 dB. This parametric study of coupled structure used to concept smart periodic antenna with sweeping radiation beam.
References
[1]
Baudrand, H., Titaouine, M., Raveu, N. and Fontgland, G. (2009) Electromagnetic Modeling of Planar almost Periodic Structures. SBMOI/IEEE MTT-S International Microwave and Optoelectronics Conference, Belem, 3-6 November 2009, 427-431.
https://doi.org/10.1109/IMOC.2009.5427552
[2]
Mikkioui, Z. and Baudrand, H. (2008) Bi-Dimensional Bi-Periodic Centred Field Microstrip Leakly Wave Antenna Analysis by a Source Modal Decomposition in Sperctal Domain. IET Microwaves Antennas and Propagation, 3, 1141-1149.
[3]
Mekkioui, Z. and Baudrand, H. (2008) Full-Wave Analysis of Uniform Microstrip Leaky-Wave Antenna with Arbitrary Metallic Strips. Electromagnetic, 28, 296-314.
https://doi.org/10.1080/02726340802040161
[4]
Xi, Y.P., Fang, D.G., Sun, Y.X. and Chow, Y.L. (2005) Mutual Coupling in a Linear Dipole Array of Finit Size. IEE Proceedings-Microwaves Antennas and Propagation, 152, 324-330.
[5]
Massaro, A., Cingolani, A., Passasea, A. and Vittoriol, M. (2009) Floquet’s Unit Cell Deseign for Periodic Structures Atoptical Frequencies. International Journal of Microwave Science and Technology, 2009, Article ID 160321.
https://doi.org/10.1155/2009/160321
[6]
Bhattacharyya, K.A. (2012) Floquet Modal Based Analysis of Finite and Infinite Phased Array Antennas. Macquarie University and IEEE Joint Lecture.
[7]
Arun Bhattacharyya, K. (2006) Phased Array Antennas. John Wiley and Sos, Inc. Publication, Hoboken.
[8]
Makarov, S., Puzella, A. and Iyer, V. (2008) Scan Impedance for an Infinite Dipole Array: Accurate Theoretical Model Compared to Numerical Software. IEEE Antennas and Propagation Magazine, 50, 132-149.
https://doi.org/10.1109/MAP.2008.4768944
[9]
Sze, K. and Shafai, L. (1999) Reflection Properties of Infinite Periodic Arrays of Rectangular Conducting Patches. Canadian Journal of Electrical and Computer Engineering, 24, 35-41.
[10]
Watanable, K. and Yasumoto, K. (2007) Tow-Dimensional Electromagnetic Scattering of Non-Plane Incident Waves by Periodic Structures. Progress in Electromagnetics Research, 74, 241-271. https://doi.org/10.2528/PIER07050902
[11]
Skrivervik, K. and Mosig, L. (1992) Finite Phased Array of Microstrip Patch Antennas: The Infinite Array Approach. IEEE Transactions on Antennas and Propagation, 40, 579-582.
[12]
Reyanaa, A., Panduroa, D., Covarrubias and Mendeza, A. (2012) Design of Steerable Concentric Rings Array for Low Side Lobe Level. Scientia Iranica, 19, 727-732.
https://doi.org/10.1016/j.scient.2011.08.028
[13]
Dauguet, S., Gillard, R., Citerne, J. and Piton, G. (1997) Extension of the Compression Approach to Include the Treatement of Radiation Pattern in the Electromagnetic Analysis of Active Plannar Antennas. Antennas and Propagation Society International Symposium, 22-25.
[14]
Bilel, H., Aguili, T. and Baugrand, H. (2015) Floquet Modal Analysis to Modelize and Study 2 D Planar almost Periodic Structures in Finite and Infinite Extend with Coupled Motifs. PIERS B.
[15]
Bilel, H., Aguili, T., Ravue, N. and Baugrand, H. (2014) Calculation of Mutual Coupling Parameter and Their Effects in 1D almost Periodic Structures. PIERS B.
[16]
Bilel, H., Limam, S. and Aguili, T. (2016) Uniform and Concentric Circular Antenna Arrays Synthesis for Smart Antenna Systems Using Artificial Neural Network Algorithm. Progress in Electromagnetics Research B, 67, 91-105.
https://doi.org/10.2528/PIERB16031508
[17]
Bilel, H., Aguili, T. and Audrand, H. (2012) Uni-Dimensional Planar Almost Periodic Structures Analysis to Decompose Central Arbitrary Located Source in Spectral Domain. International Symposium on Antenna Technology and Applied Electromagnetics, Toulouse, 25-28 June 2012, 1-5.
[18]
Rodrguez-Berral, R., Mesa, F., Baccarelli, P. and Burghignoli, P. (2009) Excitation of a Periodic Microstrip Line by an Aperiodic Delta-Gap Source. IEEE Transactions on Antennas and Propagation, 8, 641-644.
https://doi.org/10.1109/LAWP.2009.2023252
[19]
Berry, D., Malech, R. and Kennedy, W. (2012) The Reflectarray Antenna. IEEE Transaction on Antennas and Propagation, 11, 645-651.
https://doi.org/10.1109/TAP.1963.1138112
[20]
Riabi, M., Ahmadpanah, M., Benzina, H., Baudrand, H. and Fouad Hanna, V. (1995) Performance of the LSBRM Using Efficient Weighting Functions for Planar Structures. IEEE Transaction on Antennas and Propagation, 142, 364-368.
https://doi.org/10.1049/ip-map:19952004
[21]
Mili, S. and Aguili, T. (2011) Study of Fractal-Shaped Structures with Pin Diodes Using the Multi-Scale Method Combined to the Generalized Equivalen Circuit Modeling. Progress in Electromagnetics Research B, 27, 213-233.
https://doi.org/10.2528/PIERB10110105
[22]
Montgomery, J. (1978) Scattering by an Infinite Periodic Array of Microstrip Elements? IEEE Transaction on Antennas and Propagation, 26, 850-854.
https://doi.org/10.1109/TAP.1978.1141956
[23]
Arrebola, M., Alvarez, Y., Encinar, J. and Las-Heras, F. (2009) Accurate Analysis of Printed Reflectarrays Considering the near Field of the Primary Feed. IET Microwaves, Antennas and Propagation, 3, 187-194.
https://doi.org/10.1049/iet-map:20070325
[24]
Hannan, P. and Balfour, M. (1965) Simulation of a Phased Array Antenna in Waveguide. IEEE Transaction on Antennas and Propagation, 13, 342-353.
https://doi.org/10.1109/TAP.1965.1138428
[25]
Milon, M., Cadoret, D., Gillard, R. and Legay, H. (2007) Surrounded-Element Approach for the Simulation of Reflectarray Radiating Cells. IET Microwaves Antennas and Propagation, 1, 289-293. https://doi.org/10.1049/iet-map:20050291
[26]
Aguili, T. (2000) Thesis Modélisation des composants SHF planaires par la mthodecircuits equivalents. National Engineering Scool of Tunis ENIT.
[27]
Aubert, H. and Baudrant, H. (2003) Lelectromagnetisme par les Schemas Equivalents. Cepadus.
[28]
Raveu, N. and Pigaglio, O. (2012) Rsolution de problemes hautes frquences par les schmas quivalents. ditions Cpadues.
[29]
Clement, Y. (2012) Thesis Modlisation lectromagntique de cellules actives environnes-Application a l’analyse et la synthese d’une antenne reflectarray a balayage lecronique. INSA de Rennes.
[30]
Jihed, B.S. (2013) Rductibilit et thorie de Floquet pour systemes diffrenciels non linaires. Universit Panthon-Sorbone, Paris.
[31]
Nosal, S. (2009) Modlisation lectromagntique de structures priodiques et matriaux artificiels Application a la conception d’un radome passe bande. cole centrale Paris.
[32]
Reynaa, A., Panduroa, A. and Covarrubias, H. (2012) Design of Steerable Concentric Rings Array for Low Side Lobe Level. Scientia Iranica, 19, 727-732.
https://doi.org/10.1016/j.scient.2011.08.028
[33]
Ben Latifa, N., Bilel, H. and Aguili, T. (2017) Floque Modal Analysis to Study Radiation Pattern for Coupled Almost Periodic Antenna Array. 14th International Conference on Computer Systems and Applications, Hammamet, 30 October-3 November 2017, 109-113.
[34]
Ben Latifa, N., Bilel, H. and Aguili, T. (2017) Floque Modal Analysis to Study Periodic and Aperiodic Planar Antenne Arrays with Mututal Coupling.
[35]
Ben Latifa, N., Bilel, H. and Aguili, T. (2018) Electronically Steerable Radiation Pattern of Coupled Periodic Antenna Used Floquet Analysis.
[36]
Ben Latifa, N., Bilel, H. and Aguili, T. (2018) Three-Dimensional Radiation of Coupled Smart Periodic Antennas Using Floquet Modal Analysis.