AIM: The purpose of this research was to determine the changes of the inflammatory parameters in the long term with the use of dipeptidyl peptidase-4 inhibitors. Material and Methods: In this research we have retrospectively reviewed the records of 80 patients who had added dipeptidyl peptidase-4 inhibitors (40 sitagliptin and 40 vildagliptin) to their ongoing therapies. Patients’ values of inflammation at the beginning of this process were taken as initial values, while values at the end of this process were considered as final values. Results: A total of 80 patients [38.8% (n = 31) of the patients were male, while 61.3% (n = 49) were female] enrolled in the study. When the whole group was evaluated, the mean age was 56.1 ± 9.7 years. The median follow-up time of the patients with DPP-4 inhibitors was 18 (2 - 64) months. The mean MPV value was measured as 8.79 ± 1.71 fL before DPP-4 inhibitors and it was 10.06 ± 1.42 fL after the follow-up period (p < 0.001). The median value serum GGT was 30.5 (13 - 194) U/L before DPP-4 inhibitor and 29.5 (12 - 112) U/L at the end (p = 0.048). The mean uric acid level before the use of di-peptidyl peptidase-4 inhibitors was 4.7 ± 1.6 mg/dL, and this level was 5.0 ± 1.5 mg/dL after the follow-up period (p = 0.048). Conclusion: In this study, it was observed that MPV and GGT levels were improved by dipeptidyl peptidase-4 inhibitors in long-term.
References
[1]
WHO (2017) Global Report on Diabetes. World Health Organization. https://www.who.int/diabetes/global-report/en/
[2]
Kang, Y.M. and Jung, C.H. (2017) Effects of Incretin-Based Therapies on Diabetic Microvascular Complications. Endocrinology and Metabolism, 32, 316-325. https://synapse.koreamed.org/DOIx.php?id=10.3803/EnM.2017.32.3.316 https://doi.org/10.3803/EnM.2017.32.3.316
[3]
Kang, Y.M. and Jung, C.H. (2016) Cardiovascular Effects of Glucagon-Like Peptide-1 Receptor Agonists. Endocrinology and Metabolism, 31, 258-274. http://synapse.koreamed.org/DOIx.php?id=10.3803/EnM.2016.31.2.258 https://doi.org/10.3803/EnM.2016.31.2.258
[4]
Pratley, R.E. and Gilbert, M. (2008) Targeting Incretins in Type 2 Diabetes: Role of GLP-1 Receptor Agonists and DPP-4 Inhibitors. The Review of Diabetic Studies, 5, 73-94. https://doi.org/10.1900/RDS.2008.5.73 http://www.soc-bdr.org/content/e4/e887/volRdsVolumes5237/issRdsIssues5874/chpRdsChapters 5886/strRdsArticles5887/index_en.html?preview=preview
[5]
Conarello, S.L., Li, Z., Ronan, J., Roy, R.S., Zhu, L., Jiang, G., et al. (2003) Mice Lacking Dipeptidyl Peptidase IV Are Protected against Obesity and Insulin Resistance. Proceedings National Academy of Sciencs of the USA, 100, 6825-6830. http://www.pnas.org/cgi/doi/10.1073/pnas.0631828100 https://doi.org/10.1073/pnas.0631828100
[6]
Ben-Shlomo, S., Ben, S.S., Zvibel, I., Rabinowich, L., Goldiner, I., Shlomai, A., et al. (2013) Dipeptidyl Peptidase 4-Deficient Rats Have Improved Bile Secretory Function in High Fat Diet-Induced Steatosis. Digestive Diseases and Sciences, 58, 172-178. http://link.springer.com/10.1007/s10620-012-2353-7 https://doi.org/10.1007/s10620-012-2455-2
[7]
Chen, C., Yu, Q., Zhang, S., Yang, P. and Wang, C.-Y. (2015) Assessing the Efficacy and Safety of Combined DPP-4 Inhibitor and Insulin Treatment in Patients with Type 2 Diabetes: A Meta-Analysis. International Journal of Clinical & Experimental Pathology, 8, 14141-14150. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4713513/
[8]
DeFronzo, R., Triplitt, E. and Cersosimo, R.A. (2010) Pioglitazone and Alogliptin Combination Therapy in Type 2 Diabetes: A Pathophysiologically Sound Treatment. Vascular Health and Risk Management, 6, 671-690. http://www.dovepress.com/pioglitazone-and-alogliptin-combination-therapy-in-type-2-diabetes -a-p-peer-reviewed-article-VHRM https://doi.org/10.2147/VHRM.S4852
[9]
Ahren, B. (2008) Novel Combination Treatment of Type 2 Diabetes DPP-4 Inhibition + Metformin. Vascular Health and Risk Management, 4, 383-394. https://www.dovepress.com/novel-combination-treatment-of-type-2-diabetes-dpp-4-inhibition --metfo-peer-reviewed-article-VHRM https://doi.org/10.2147/VHRM.S1944
[10]
Sa-Nguanmoo, P., Tanajak, P., Kerdphoo, S., Jaiwongkam, T., Pratchayasakul, W., Chattipakorn, N., et al. (2017) SGLT2-Inhibitor and DPP-4 Inhibitor Improve Brain Function via Attenuating Mitochondrial Dysfunction, Insulin Resistance, Inflammation, and Apoptosis in HFD-Induced Obese Rats. Toxicology and Applied Pharmacology, 333, 43-50. https://doi.org/10.1016/j.taap.2017.08.005 https://linkinghub.elsevier.com/retrieve/pii/S0041008X1730340X
[11]
Wang, M.-T., Lin, S.-C., Tang, P.-L., Hung, W.-T., Cheng, C.-C., Yang, J.-S., et al. (2017) The Impact of DPP-4 Inhibitors on Long-Term Survival among Diabetic Patients after First Acute Myocardial Infarction. Cardiovasc Diabetol, 16, 89. http://cardiab.biomedcentral.com/articles/10.1186/s12933-017-0572-0 https://doi.org/10.1186/s12933-017-0572-0
[12]
Kanazawa, I., Tanaka, K. and Sugimoto, T. (2014) DPP-4 Inhibitors Improve Liver Dysfunction in Type 2 Diabetes Mellitus. Medical Science Monit, 20, 1662-1667. http://www.ncbi.nlm.nih.gov/pubmed/25228119 https://doi.org/10.12659/MSM.890989
[13]
Angelopoulou, E. and Piperi, C. (2018) DPP-4 Inhibitors: A Promising Therapeutic Approach against Alzheimer’s Disease. Annals of Translational Medicine, 6, 255-255. http://atm.amegroups.com/article/view/19330/19961 https://doi.org/10.21037/atm.2018.04.41
[14]
Muriach, M., Flores-Bellver, M., Romero, F.J. and Barcia, J.M. (2014) Diabetes and the Brain: Oxidative Stress, Inflammation, and Autophagy. Oxidative Medicine and Cellular Longevity, 2014, Article ID 102158. https://doi.org/10.1155/2014/102158 http://www.ncbi.nlm.nih.gov/pubmed/25215171
[15]
El Assar, M., Angulo, J. and Rodríguez-Manas, L. (2016) Diabetes and Ageing-Induced Vascular Inflammation. The Journal of Physiology, 594, 2125-2146. http://www.ncbi.nlm.nih.gov/pubmed/26435167 https://doi.org/10.1113/JP270841
[16]
Karam, B.S., Chavez-Moreno, A., Koh, W., Akar, J.G. and Akar, F.G. (2017) Oxidative Stress and Inflammation as Central Mediators of Atrial Fibrillation in Obesity and Diabetes. Cardiovascular Diabetology, 16, 120. http://www.ncbi.nlm.nih.gov/pubmed/28962617 https://doi.org/10.1186/s12933-017-0604-9
[17]
Delgado-García, G., Galarza-Delgado, D.á., Colunga-Pedraza, I., Borjas-Almaguer, O.D., Mandujano-Cruz, I., Benavides-Salgado, D., et al. (2016) O volume plaquetário médio está reduzido em adultos com lúpus ativo. Revista Brasileira de Reumatologia, 56, 504-508. http://www.ncbi.nlm.nih.gov/pubmed/26968762 https://doi.org/10.1016/j.rbr.2015.12.003
[18]
Karaman, H., Karakukcu, C. and Kocer, D. (2013) Can Mean Platelet Volume Serve as a Marker for Prostatitis? International Journal of Medical Sciences, 10, 1387-1391. http://www.ncbi.nlm.nih.gov/pubmed/23983600 https://doi.org/10.7150/ijms.6126
[19]
Beyazit, F., Oztürk, F.H., Pek, E. and ünsal, M.A. (2017) Evaluation of the Hematologic System as a Marker of Subclinical Inflammation in Hyperemesis Gravidarum: A Case Control Study. Ginekologia Polska, 88, 315-319. http://www.ncbi.nlm.nih.gov/pubmed/28727131 https://doi.org/10.5603/GP.a2017.0059
[20]
Avci, A., Avci, D., Erden, F., Ragip, E., Cetinkaya, A., Ozyurt, K., et al. (2017) Can We Use the Neutrophil-to-Lymphocyte Ratio, Platelet-to-Lymphocyte Ratio, and Mean Platelet Volume Values for the Diagnosis of Anterior Uveitis in Patients with Behcet’s Disease? Therapeutics and Clinical Risk Management, 13, 881. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5529084/ https://doi.org/10.2147/TCRM.S135260
[21]
Erden, F., Karagoz, H., Avci, A., Avci, D., Cetinkaya, A. and Erden, A. (2017) The Values of Mean Platelet Volume and the Mean Platelet Volume/Platelet Ratio for Predicting Deep Venous Thrombosis in Behcet’s Disease. LaboratoriumsMedizin, 41, 153-157. https://doi.org/10.1515/labmed-2017-0068 http://www.degruyter.com/view/j/labm.2017.41.issue-3/labmed-2017-0068/labmed-2017- 0068.xml
[22]
Paolicchi, A., Minotti, G., Tonarelli, P., Tongiani, R., De Cesare, D., Mezzetti, A., et al. (1999) Gamma-Glutamyl Transpeptidase-Dependent Iron Reduction and LDL Oxidation—A Potential Mechanism in Atherosclerosis. Journal of Investigative Medicine, 47, 151-160. http://www.ncbi.nlm.nih.gov/pubmed/10198571
[23]
Kim, J.G., Chang, K., Choo, E.H., Lee, J.-M. and Seung, K.-B. (2018) Serum Gamma-Glutamyl Transferase Is a Predictor of Mortality in Patients with Acute Myocardial Infarction. Medicine (Baltimore), 97, e11393. http://www.ncbi.nlm.nih.gov/pubmed/30024510 https://doi.org/10.1097/MD.0000000000011393
[24]
Williams, M.D. and Nadler, J.L. (2007) Inflammatory Mechanisms of Diabetic Complications. Current Diabetes Reports, 7, 242-248. http://www.ncbi.nlm.nih.gov/pubmed/17547842 https://doi.org/10.1007/s11892-007-0038-y
[25]
Akoumianakis, I. and Antoniades, C. (2017) Dipeptidyl Peptidase IV Inhibitors as Novel Regulators of Vascular Disease. Vascular Pharmacology, 96-98, 1-4. https://linkinghub.elsevier.com/retrieve/pii/S1537189117301556 https://doi.org/10.1016/j.vph.2017.07.001
[26]
Duan, L., Rao, X., Xia, C., Rajagopalan, S. and Zhong, J. (2017) The Regulatory Role of DPP4 in Atherosclerotic Disease. Cardiovascular Diabetology, 16, 76. http://cardiab.biomedcentral.com/articles/10.1186/s12933-017-0558-y https://doi.org/10.1186/s12933-017-0558-y
[27]
Lontchi-Yimagou, E., Sobngwi, E., Matsha, T.E. and Kengne, A.P. (2013) Diabetes Mellitus and Inflammation. Current Diabetes Reports, 13, 435-444. http://link.springer.com/10.1007/s11892-013-0375-y https://doi.org/10.1007/s11892-013-0375-y
[28]
Xie, W., Song, X. and Liu, Z. (2018) Impact of Dipeptidyl-Peptidase 4 Inhibitors on Cardiovascular Diseases. Vascular Pharmacology, 109, 17-26. https://linkinghub.elsevier.com/retrieve/pii/S1537189117302999 https://doi.org/10.1016/j.vph.2018.05.010
[29]
Birnbaum, Y., Bajaj, M., Yang, H.-C. and Ye, Y. (2018) Combined SGLT2 and DPP4 Inhibition Reduces the Activation of the Nlrp3/ASC Inflammasome and Attenuates the Development of Diabetic Nephropathy in Mice with Type 2 Diabetes. Cardiovascular Drugs and Therapy, 32, 135-145. http://link.springer.com/10.1007/s10557-018-6778-x https://doi.org/10.1007/s10557-018-6778-x
[30]
Ikedo, T., Minami, M., Kataoka, H., Hayashi, K., Nagata, M., Fujikawa, R., et al. (2017) Dipeptidyl Peptidase-4 Inhibitor Anagliptin Prevents Intracranial Aneurysm Growth by Suppressing Macrophage Infiltration and Activation. Journal of the American Heart Association, 6. https://doi.org/10.1161/JAHA.116.004777 https://www.ahajournals.org/doi/10.1161/JAHA.116.004777
[31]
Ervinna, N., Mita, T., Yasunari, E., Azuma, K., Tanaka, R., Fujimura, S., et al. (2013) Anagliptin, a DPP-4 Inhibitor, Suppresses Proliferation of Vascular Smooth Muscles and Monocyte Inflammatory Reaction and Attenuates Atherosclerosis in Male Apo E-Deficient Mice. Endocrinology, 154, 1260-1270. https://academic.oup.com/endo/article-lookup/doi/10.1210/en.2012-1855 https://doi.org/10.1210/en.2012-1855
[32]
Singh, T.P., Vangaveti, V.N. and Malabu, U.H. (2015) Dipeptidyl Peptidase-4 Inhibitors and Their Potential Role in the Management of Atherosclerosis—A Review. Diabetology & Metabolic Syndrome, 9, 223-229. https://linkinghub.elsevier.com/retrieve/pii/S1871402115000338 https://doi.org/10.1016/j.dsx.2015.04.005
[33]
Tanju, C., Ekrem, G., Berksoy Emel, A. and Nur, A. (2014) Mean Platelet Volume as a Negative Marker of Inflammation in Children with Rotavirus Gastroenteritis. Iranian Journal of Pediatrics, 24, 617-622. http://www.ncbi.nlm.nih.gov/pubmed/25793071
[34]
Kodiatte, T.A., Manikyam, U.K., Rao, S.B., Jagadish, T.M., Reddy, M., Lingaiah, H.K.M., et al. (2012) Mean Platelet Volume in Type 2 Diabetes Mellitus. Journal of Laboratory Physicians, 4, 5-9. http://www.jlponline.org/text.asp?2012/4/1/5/98662 https://doi.org/10.4103/0974-2727.98662
[35]
Papanas, N., Symeonidis, G., Maltezos, E., Mavridis, G., Karavageli, E., Vosnakidis, T., et al. (2004) Mean Platelet Volume in Patients with Type 2 Diabetes Mellitus. Platelets, 15, 475-458. https://doi.org/10.1080/0953710042000267707 http://www.tandfonline.com/doi/full/10.1080/0953710042000267707
[36]
Aksu, E., Avci, D. and Cikim, G. (2016) The Relation between Mean Platelet Volume and Coronary Artery Disease in Type 2 Diabetes Mellitus Patients. International Journal of Health Sciences and Research, 6, 50. http://www.ijhsr.org
[37]
Hudzik, B., Korzonek-Szlacheta, I., Szkodziński, J., Liszka, R., Lekston, A., Zubelewicz-Szkodzińska, B., et al. (2018) Association between Multimorbidity and Mean Platelet Volume in Diabetic Patients with Acute Myocardial Infarction. Acta Diabetologica, 55, 175-183. http://link.springer.com/10.1007/s00592-017-1079-6 https://doi.org/10.1007/s00592-017-1079-6
[38]
Sarikaya, S., Sahin, S., Akyol, L., Borekci, E., Yilmaz, Y.K., Altunkas, F., et al. (2014) Mean Platelet Volume Is Associated with Myocardial Perfusion Defect in Diabetic Patients. Cardiovascular Journal of Africa, 25, 110-113. http://www.cvja.co.za/onlinejournal/vol25/vol25_issue3/#20/z https://doi.org/10.5830/CVJA-2014-013
[39]
Ulutas, K.T., Dokuyucu, R., Sefil, F., Yengil, E., Sumbul, A.T., Rizaoglu, H., et al. (2014) Evaluation of Mean Platelet Volume in Patients with Type 2 Diabetes Mellitus and Blood Glucose Regulation: A Marker for Atherosclerosis? International Journal of Clinical and Experimental Medicine, 7, 955-961. http://www.ncbi.nlm.nih.gov/pubmed/24955167
[40]
Ceyhun, V.A.R.I.M., et al. (2015) Yeni Tani Tip 2 Diabetes Mellitus’ lu hastalarda DPP-4 inhibitorlerinin HbA1c, Hematolojik ve Inflamasyon Parametreleri Uzerine Etkileri. Ortadogu Medical Journal, 7, 172-177. https://web.a.ebscohost.com/abstract?direct=true&profile=ehost&scope=site&authtype= crawler&jrnl=13093630&AN=112699282&h=rfRulFY0B7CU1J8CQsSO6WI11pDAl 7p70IYfyBQpSyUAbeFELlAFuPWCeO3B82ybfTxztGdZ%2FKNT6lihdy7Ayg%3D%3D &crl=c&resultNs=AdminWebAuth&resultLocal
[41]
Goldberg, D.M. (1980) Structural, Functional, and Clinical Aspects of Gamma-Glutamyltransferase. CRC Critical Reviews in Clinical Laboratory Sciences, 12, 1-58. http://www.ncbi.nlm.nih.gov/pubmed/6104563 https://doi.org/10.3109/10408368009108725
[42]
Ali, S.S., Oni, E.T., Blaha, M.J., Veledar, E., Feiz, H.R., Feldman, T., et al. (2016) Elevated Gamma-Glutamyl Transferase Is Associated with Subclinical Inflammation Independent of Cardiometabolic Risk Factors in an Asymptomatic Population: A Cross-Sectional Study. Nutrition & Metabolism, 13, 37. http://www.ncbi.nlm.nih.gov/pubmed/27195017 https://doi.org/10.1186/s12986-016-0097-7
[43]
Lee, D.S., Evans, J.C., Robins, S.J., Wilson, P.W., Albano, I., Fox, C.S., et al. (2007) Gamma Glutamyl Transferase and Metabolic Syndrome, Cardiovascular Disease, and Mortality Risk: The Framingham Heart Study. Arteriosclerosis, Thrombosis, and Vascular Biology, 27, 127-133. https://doi.org/10.1161/01.ATV.0000251993.20372.40 https://www.ahajournals.org/doi/10.1161/01.ATV.0000251993.20372.40
[44]
Ortakoyluoglu, A., Boz, B., Dizdar, O.S., Avci, D., Cetinkaya, A. and Baspinar, O. (2016) The Association of Serum Gamma-Glutamyl Transpeptidase Level and Other Laboratory Parameters with Blood Pressure in Hypertensive Patients under Ambulatory Blood Pressure Monitoring. Therapeutics and Clinical Risk Management, 12, 1395-1401. https://doi.org/10.2147/TCRM.S116603 https://www.dovepress.com/the-association-of-serum-gamma-glutamyl-transpeptidase-level- and-other-peer-reviewed-article-TCRM
[45]
El-Sherbeeny, N.A. and Nader, M.A. (2016) The Protective Effect of Vildagliptin in Chronic Experimental Cyclosporine A-Induced Hepatotoxicity. Canadian Journal of Physiology and Pharmacology, 94, 251-256. http://www.nrcresearchpress.com/doi/10.1139/cjpp-2015-0336 https://doi.org/10.1139/cjpp-2015-0336
[46]
Osawa, S., Kawamori, D., Katakami, N., Takahara, M., Sakamoto, F., Katsura, T., et al. (2016) Significant Elevation of Serum Dipeptidyl Peptidase-4 Activity in Young-Adult Type 1 Diabetes. Diabetes Research and Clinical Practice, 113, 135-142. https://doi.org/10.1016/j.diabres.2015.12.022 https://linkinghub.elsevier.com/retrieve/pii/S0168822716000309
[47]
Gupta, N.A., Mells, J., Dunham, R.M., Grakoui, A., Handy, J., Saxena, N.K., et al. (2010) Glucagon-Like Peptide-1 Receptor Is Present on Human Hepatocytes and Has a Direct Role in Decreasing Hepatic Steatosis in Vitro by Modulating Elements of the Insulin Signaling Pathway. Hepatology, 51, 1584-1592. https://doi.org/10.1002/hep.23569
[48]
Yilmaz, Y., Yonal, O., Deyneli, O., Celikel, C.A., Kalayci, C. and Duman, D.G. (2012) Effects of Sitagliptin in Diabetic Patients with Nonalcoholic Steatohepatitis. Acta Gastro-Enterologica Belgica, 75, 240-244. http://www.ncbi.nlm.nih.gov/pubmed/22870790
[49]
Atil, A. and Deniz, A. (2018) Could Be Serum Uric Acid a Risk Factor for Thrombosis and/or Uveitis in Behcet’s Disease? Vascular, 26, 378-386. http://journals.sagepub.com/doi/10.1177/1708538117742831 https://doi.org/10.1177/1708538117742831
[50]
Jensen, T., Niwa, K., Hisatome, I., Kanbay, M., Andres-Hernando, A., Roncal-Jimenez, C.A., et al. (2018) Increased Serum Uric Acid over Five Years Is a Risk Factor for Developing Fatty Liver. Scientific Reports, 8, Article No. 11735. http://www.nature.com/articles/s41598-018-30267-2 https://doi.org/10.1038/s41598-018-30267-2
[51]
Yamagishi, S., Ishibashi, Y., Ojima, A, Sugiura, T. and Matsui, T. (2014) Linagliptin, a Xanthine-Based Dipeptidyl Peptidase-4 Inhibitor, Decreases Serum Uric Acid Levels in Type 2 Diabetic Patients Partly by Suppressing Xanthine Oxidase Activity. International Journal of Cardiology, 176, 550-552. https://linkinghub.elsevier.com/retrieve/pii/S0167527314012157 https://doi.org/10.1016/j.ijcard.2014.07.023
[52]
Moriya, C. and Satoh, H. (2016) Teneligliptin Decreases Uric Acid Levels by Reducing Xanthine Dehydrogenase Expression in White Adipose Tissue of Male Wistar Rats. Journal of Diabetes Research, 2016, Article ID: 3201534. http://www.hindawi.com/journals/jdr/2016/3201534/ https://doi.org/10.1155/2016/3201534
[53]
Shimodaira, M., Niwa, T., Nakajima, K. and Kobayashi, M. (2015) Beneficial Effects of Vildagliptin on Metabolic Parameters in Patients with Type 2 Diabetes. Endocrine, Metabolic & Immune Disorders—Drug Targets, 15, 223-228. http://www.ncbi.nlm.nih.gov/pubmed/25809193 https://doi.org/10.2174/1871530315666150324114149