全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Study of Ferrospheres in the Coal Fly Ash

DOI: 10.4236/ojapps.2019.91002, PP. 10-16

Keywords: Fly Ash, Ferrospheres, Quartz, Albite, Anorthite, Hematite

Full-Text   Cite this paper   Add to My Lib

Abstract:

Coal fly ash is an industrial by-product, produced from coal combustion in thermal power plants. It is the most complex anthropogenic materials, which consists of combination of minerals originated from different sources. Coal fly ash and its byproduct has become an environmental concern over the World. Therefore, there is a pressing and ongoing need to investigate the structures and some properties of coal fly ash and develop new recycling methods for it. The amount of silica, aluminum, calcium, potassium, magnesium, sodium, titanium and phosphorus oxides contained in power plant fly ash was determined by X-ray flouresecence (XRF) analysis. Concentration of heavy metals in fly ash was in sequence of Pb > Zn > Cu > Cr > Ni. As results of Scanning Electron Microscopy (SEM), except for porous and hollow particles, large and small microspheres were observed. These particles are classified as ferrospheres. X-ray diffraction (XRD) analysis show that fly ash consists of the following crystal phases: quartz, albite, anorthite and hematite.

References

[1]  Openshaw, S.C., Miller, W.L., Bolch, W.E. and Bloomquist, D. (1992) Utilization of Coal Fly Ash. State University System of Florida, Florida Center for Solid and Hazardous Management, Gainesville.
[2]  Sokol, E.V., Maksimova, N.V., Volkova, N.I., Nigmatulina, E.N. and Frenkel, A.E. (2000) Hollow Silicate Microspheres from Fly Ashes of the Chelyabinsk Brown Coals (South Urals, Russia). Fuel Processing Technology, 67, 35-52.
https://doi.org/10.1016/S0378-3820(00)00084-9
[3]  Sokol, E.V., Kalugin, V.M., Nigmatulina, E.N., Volkova, N.I., Frenkel, A.E. and Maksimova, N.V. (2002) Ferrosphers from Fly Ashes of Chelyabinsk Coals: Chemical Composition, Morphology and Formation Conditions. Fuel, 81, 867-876.
https://doi.org/10.1016/S0016-2361(02)00005-4
[4]  Schert, J., Townsend, T. and Wu, C.-Y. (2012) Identification of Potential Concerns Associated with FDOT Use of Ammoniated Fly Ash. Hinkley Center for Solid and Hazardous Waste Management, Gainesville.
[5]  Putz, H. and Brandenburg, K. Phase Indentification Form Powder Diffraction (Match!). Version 1.11. Bonn.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133