The main objective was to show the decrement of serotoninergic brain activity in depressed women, through the analyses of the slope amplitude of N1/P2 components of the auditory-evoked potentials (AEP), and the measurement of the L-tryptophan free fraction in plasma (FFT). This cross-sectional study was carried out in 60 women, 30 depressed and 30 normal controls. Both groups were measured FFT, glucose, and neutral amino acids (NAA) levels; besides performing AEP to analyses the N1/P2 slope amplitude. It was found a lengthening in the slope amplitude of N1/P2 components of AEP in the group of depressed women, and despite that the level of FFT was low, there were no changes between bound fraction and the total L-Trp. The former suggests a decrease in serotonergic brain activity in the group of depressed women. Otherwise, since the auditory cortex response to sound is regulated by serotonergic innervation, it was expected a change in the behavior of AEP in the group of depressed patients. Thus, the slope amplitude of N1/P2 components of the AEP and the measurement of FFT have proved to be a good clinical indicators of the serotonergic neurotransmission state in the brain of depressed patients, and in another clinical conditions where brain serotonin is involved.
References
[1]
Akiskal, H. S. (2000). Mood Disordes: Introduction and Overwiew. In B. J. Sadock, & V. A. Sadock (Eds.), Comprehensive Textbook of Psychiatry (pp. 1284-1298). New York: Lippincott, Williams & Wilkins.
[2]
American Psychiatric Association (1994). Diagnostic and Statistical Manual of Mental Disorders: DSM-IV (4th ed.). Washington DC: American Psychiatric Association.
[3]
Badawy, A. A. (1977). The Functions and Regulation of Tryptophan Pyrrolase. Life Sciences, 21, 755-768. https://doi.org/10.1016/0024-3205(77)90402-7
[4]
Banki, C. M., Molnar, G., & Vojnik, M. (1981). Cerebrospinal Fluid Amine Metabolites, Tryptophan and Clinical Parameters in Depression: Part 2. Psychopathological Symptoms. Journal of Affective Disorders, 3, 91-99. https://doi.org/10.1016/0165-0327(81)90034-3
[5]
Bentley, R. (1963). Glucose Oxidase in the Enzymes. In P. D. Boyer (Ed.), The Enzymes (pp. 567-586). New York: Academic Press.
[6]
Berenzon, S., Lara, M. A., Robles, R. et al. (2013). Depresión: Estado del conocimiento y las necesidades políticas públicas y planes de acción en México. Salud Pública de México, 55, 74-80. https://doi.org/10.1590/S0036-36342013000100011
[7]
Berhan, A., & Barker, A. (2014). Vortioxetine in the Treatment of Adult Patients with Major Depressive Disorder: A Meta-Analysis of Randomized Double-Blind Controlled trials. BMC Psychiatry, 14, 276. https://doi.org/10.1186/s12888-014-0276-x
[8]
Blazer, D. G. (2000). Mood Disorders: Epidemiology. In B. J. Sadoc, & V. A. Sadock (Eds.), Comprehensive Textbook of Psychiatry (pp. 1298-1308). New York: Lippincott, Williams & Wilkins.
[9]
Carr, G. V., & Lucki, I. (2011). The Role of Serotonin Receptor Sybtypes in Treating Depression: A Review of Animal Studies. Psychopharmacology, 213, 265-287. https://doi.org/10.1007/s00213-010-2097-z
[10]
Cole, R. A., Soeldner, J. S., Dunn, P. J. et al. (1978). A Rapid Method for the Determination of Glycosylated Hemoglobin Using High-Pressure Liquid Chromatography. Metabolism, 27, 289-301. https://doi.org/10.1016/0026-0495(78)90109-9
[11]
Doumas, B. T., Watson, W. A., & Biggs, H. G. (1971). Albumin Standards the Measurement of Serum Albumin with Bromocresol Green. Clinica Chimica Acta, 31, 87-96. https://doi.org/10.1016/0009-8981(71)90365-2
[12]
Dunlop, B. W., & Nemeroff, C. B. (2007). The Role of Dopamine in the Pathophysiology of Depression. Archives of General Psychiatry, 64, 327-337. https://doi.org/10.1001/archpsyc.64.3.327
[13]
Ehlers, C. L., Wall, T. L., & Chaplin, R. I. (1991). Long Latency Event-Related Potentials in Rats: Effects of Dopaminergic and Serotonergic Depletions. Pharmacology Biochemistry and Behavior, 38, 789-793. https://doi.org/10.1016/0091-3057(91)90243-U
[14]
Einarsson, S., Josefsson, B., & Lagerkvist, S. (1983). Determination of Amino Acids with 9-Fluronylmethylcholoroformate and Reversed-Phase High-Performance Liquid Chromatography. Journal of Chromatography A, 282, 609-618. https://doi.org/10.1016/S0021-9673(00)91638-8
[15]
Ferrier, I. N., McKeith, I. G., Cross, A. J. et al. (1986). Postmortem Neurochemical Studies in Depression. Annals of the New York Academy of Sciences, 487, 128-142. https://doi.org/10.1111/j.1749-6632.1986.tb27893.x
[16]
Gijsman, H. J., Geddes, J. R., Rendell, J. M. et al. (2004). Antidepressants for Bipolar Depression: A Systematic Review of Randomized, Controlled Trials. American Journal of Psychiatry, 161, 1537-1547. https://doi.org/10.1176/appi.ajp.161.9.1537
[17]
Hegerl, U., & Juckel, G. (1993). Intensity Dependence of Auditory Evoked Potentials as an Indicator of Central Serotonergic Neurotransmission. A New Hypothesis. Biological Psychiatry, 33, 173-187. https://doi.org/10.1016/0006-3223(93)90137-3
[18]
Jacobs, B. L., & Azmitia, E. C. (1992). Structure and Function of the Brain Serotonin System. Physiological Reviews, 72, 165-229. https://doi.org/10.1152/physrev.1992.72.1.165
[19]
Jedynak, P., Jaholkowski, R. K., & Filipkowski, K. R. (2007). Adult Neurogenesis and Depression. Neuropsychiatria i Neuropsychologia, 2, 57-65.
[20]
Juckel, G., Molnár, M., Hegerl, U. et al. (1997). Auditory-Evoked Potentials as Indicator of Brain Serotonergic Activity—First Evidence in Behaving Cats. Biological Psychiatry, 41, 1181-1195. https://doi.org/10.1016/S0006-3223(96)00240-5
[21]
Kessler, R. C., & Bromet, E. J. (2013). The Epidemiology of Depression across Cultures. Annual Review of Public Health, 34, 119-138. https://doi.org/10.1146/annurev-publhealth-031912-114409
[22]
Lohoff, F. W. (2010). Overview of the Genetics of Major Depressive Disorder. Current Psychiatry Reports, 12, 539-546. https://doi.org/10.1007/s11920-010-0150-6
[23]
López, J. F., Chalmers, D. T., Little, K. Y. et al. (1998). A.E. Bennett Research Award. Regulation of Serotonin 1A, Glucocorticoid, and Mineralocorticoid Receptor in Rat and Human Hippocampus: Implications for the Neurobiology of Depression. Biological Psychiatry, 43, 547-573. https://doi.org/10.1016/S0006-3223(97)00484-8
[24]
Manjarrez, G., Cisneros, I., Herrera, R. et al. (2005a). Prenatal Impairment of Brain Serotonergic Transmission in Infants. The Journal of Pediatrics, 147, 592-596. https://doi.org/10.1016/j.jpeds.2005.06.025
[25]
Manjarrez, G., Hernandez, E., Robles, A. et al. (2005b). N1/P2 Component of Auditory Evoked Potential Reflect Changes of the Brain Serotonin Biosynthesis in Rats. Nutritional Neuroscience, 8, 213-218. https://doi.org/10.1080/10284150500170971
[26]
Manjarrez, G., Hernandez, Z. E., Robles, O. A. et al. (2001). Developmental Impairment of Auditory Evoked N1/P2 Component in Rats Undernourished in Utero: Its Relation to Brain Serotonin Activity. Brain Research. Developmental Brain Research, 127, 149-155. https://doi.org/10.1016/S0165-3806(01)00129-8
[27]
Manjarrez, G., Herrera, R., León, M. et al. (2006). A Low Brain Serotonergic Neurotransmission in Children with Type 1 Diabetes Detected through the Intensity Dependence of Auditory Evoked Potentials. Diabetes Care, 29, 73-77. https://doi.org/10.2337/diacare.29.01.06.dc05-1177
[28]
Manjarrez, G., Vazquez, F., Delgado, M. et al. (2007). A Functional Disturbance in the Auditory Cortex Related to a Low Serotonergic Neurotransmission in Women with Type 2 Diabetes. Neuroendocrinology, 86, 289-294. https://doi.org/10.1159/000109375
[29]
Manjarrez-Gutierrez, G., Herrera, R. H., Mejenes-Alavarez, S. A. et al. (2009). Functional Change of the Auditory Cortex Related to the Brain Serotonergic Neurotransmission in Type 1 Diabetic Adolescents with and without Depression. The World Journal of Biological Psychiatry, 10, 877-883. https://doi.org/10.1080/15622970902717032
[30]
Manjarrez-Gutierrez, G., Ramirez-Campillo, R., Borrayo-Sanchez, G. et al. (2013). Disturbance of Serotonergic Neurotransmission in Patients with Postmyocardial Infarction and Depression. Metabolic Brain Disease, 28, 15-20. https://doi.org/10.1007/s11011-012-9355-1
[31]
Mann, J. J. (1999). Role of the Serotonergic System in the Pathogenesis of Major Depression and Suicidal Behavior. Neuropsychopharmacology, 21, 99S-105S. https://doi.org/10.1016/S0893-133X(99)00040-8
[32]
Margoob, M. A., Mushtaq, D., Murtza, I. et al. (2008). Serotonin Transporter Gene Polymorphism and Treatment Response to Serotonin Reuptake Inhibitor (Escitalopram) in Depression. An Open Pilot Study. Indian Journal of Psychiatry, 50, 47-50. https://doi.org/10.4103/0019-5545.39759
[33]
McNally, L., Bhagwagar, Z., & Hannestad, J. (2008). Inflammation, Glutamate, and Glia in Depression. A Literature Review. CNS Spectrums, 13, 501-510. https://doi.org/10.1017/S1092852900016734
[34]
Medina-Mora, M. E., Borges, G., Lara, C. et al. (2005). Prevalence, Service Use, and Demographic Correlates of 12-Month DSM-IV Psychiatric Disorders in Mexico: Results from the Mexican National Comorbidity Survey. Psychological Medicine, 35, 1773-1783. https://doi.org/10.1017/S0033291705005672
[35]
Meltzer, H. Y. (1990). Role of Serotonin in Depression. Annals of the New York Academy of Sciences, 600, 486-499. https://doi.org/10.1111/j.1749-6632.1990.tb16904.x
[36]
Morrissette, D. A., & Stahl, S. M. (2014). Modulating the Serotonin System in the Treatment of Major Depressive Disorder. CNS Spectrums, 1, 57-67. https://doi.org/10.1017/S1092852914000613
[37]
Nagayama, H., Tsuchiyama, K., Yamada, K. et al. (1991). Animal Study on the Role of Serotonin in Depression. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 15, 735-744. https://doi.org/10.1016/0278-5846(91)90002-I
[38]
Nestler, E. J., Barrot, M., DiLeone, R. J. et al. (2002). Neurobiology of Depression. Neuron, 34, 13-25. https://doi.org/10.1016/S0896-6273(02)00653-0
[39]
Nutt, D. J. (2006). The Role of Dopamine and Norepinephrine in Depression and Antidepressant Treatment. Journal of Clinical Psychiatry, 67, 3-8.
[40]
Parker, K. J., Schatzberg, A. F., & Lyons, D. M. (2003). Neuroendocrine Aspects of Hypercortisolism in Major Depression. Hormones and Behavior, 43, 60-66. https://doi.org/10.1016/S0018-506X(02)00016-8
[41]
Patel, A. (2013). Review: The Role of Inflammation in Depression. Psychiatria Danubina, 2, S216-S223.
[42]
Peat, M. A., & Gibb, J. W. (1983). High-Performance Liquid Chromatography Determination of Indoleamines, Dopamine, and Norepinephrine in Rat Brain with Fluorometric Detection. Analytical Biochemistry, 128, 275-280. https://doi.org/10.1016/0003-2697(83)90375-5
[43]
Pehrson, A. L., & Sanchez, C. (2014). Serotonergic Modulation of Glutamate Neurotransmission as a Strategy for Treating Depression and Cognitive Dysfunction. CNS Spectrums, 19, 121-133. https://doi.org/10.1017/S1092852913000540
[44]
Semple, M. N., & Scott, B. H. (2003). Cortical Mechanism in Hearing. Current Opinion in Neurobiology, 13, 167-173. https://doi.org/10.1016/S0959-4388(03)00048-5
[45]
Stanley, M., Traskman-Bendz, L., & Dorovini-Zis, K. (1985). Correlations between Aminergic Metabolites Simultaneously Obtained from Human CFS and Brain. Life Sciences, 37, 1279-1286. https://doi.org/10.1016/0024-3205(85)90242-5
[46]
Stockmeier, C. A., Dailley, G. E., Shapiro, L. A. et al. (1997). Serotonin Receptor in Suicide Victims with Major Depression. Neuropsychopharmacology, 16, 162-173. https://doi.org/10.1016/S0893-133X(96)00170-4
[47]
Sullivan, P. F., Neale, M. C., & Kendler, K. S. (2000). Genetic Epidemiology of Major Depression: Review and Meta-Analysis. American Journal of Psychiatry, 157, 1552-1562. https://doi.org/10.1176/appi.ajp.157.10.1552
[48]
Von Knorring, L., Monakhov, K., & Perris, C. (1978). Augmenting/Reducing: An Adaptive Switch Mechanism to Cope with Incoming Signals in Healthy Subjects and Psychiatric Patients. Neuropsychobiology, 4, 150-179. https://doi.org/10.1159/000117630
[49]
Wagner, A. F., González, F. C., Sánchez, G. S. et al. (2012). Enfocando la depresión como problema de salud pública en México. La Salud Mental, 35, 3-11.
[50]
Zhou, F., & Hablitz, J. J. (1999). Activation of Serotonin Receptors Modulates Synaptic Transmission in Rat Cerebral Cortex. Journal of Neurophysiology, 82, 2989-2999. https://doi.org/10.1152/jn.1999.82.6.2989