全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Shallow Subsurface Stratigraphy Inferred from the Use of Vertical Electrical Soundings (VES) Survey in Central Chihuahua, Mexico

DOI: 10.4236/ojg.2019.91002, PP. 15-28

Keywords: Geophysics, Vertical Electric Soundings, Geoelectrical Sections

Full-Text   Cite this paper   Add to My Lib

Abstract:

Vertical Electrical Soundings (VES) provide fast and economical measurements used in geophysical exploration. VES were carried out in El Sauz-Encinillas (ESE) aquifer, in northern Mexico, to determine apparent resistivity and geoelectrical units’ thickness. Despite it being one of the three main aquifers feeding Chihuahua city, a lack of available geophysical data prevails in its northern portion. The main goal of this study was the determination of the geoelectrical units in the subsurface stratigraphy via electrical-resistivity soundings. The ESE’ aquifer is located within alluvial Quaternary sediments, with varying granulometry and reaching from a few meters to more than 600 meters of thickness at the center of the valley. Forty-five vertical electrical resistivity soundings (Schlumberger array, maximum AB/2 distance of 500 m) were performed throughout ESE aquifer’s northern portion. Field data were analyzed using software. Results illustrate a wide variability in resistivity values throughout the study area. Five geoelectrical units were identified: 1) a hardpan topsoil, with resistivity values ranging from 200 - 800 Ω-m ; 2) an alluvial material mixture (sand/silt) with resistivity values ranging from 25 to 100 Ω-m; 3) playa lake-type material (clay/evaporites mixture) with resistivity values ranging from 0.2 to 15 Ω-m; 4) a gravel/sand mixture with resistivity values from 100 to 300 Ω-m; and 5) a partly fractured rock or conglomeratic material with resistivity values ranging from 400 to 3500 Ω-m. The electrical resistivity data, therefore gives reasonably accurate results that can be used to understand the subsurface stratigraphy and basement configuration in groundwater exploration.

References

[1]  Gutiérrez, M., Reyes-Gómez, V.M., Alarcón-Herrera, M.T. and Núnez-López, D. (2016) Acuíferos en Chihuahua: estudios sobre sustentabilidad. Tecnociencia, X, 58-63.
[2]  Keller, P. (1977) Geology of the Sierra Gallego Area, Chihuahua, Mexico. Ph.D. Dissertation, University of Texas at Austin, 124 p.
[3]  Goodell, P. (1985) Chihuahua City Uranium Province, Chihuahua, Mexico. In Uranium in Volcanic Rocks. International Atomic Energy Agency, Vienna, 484.
[4]  Villalobos-Aragón, A. (2004) Sedimentología e hidrogeología del abanico aluvial de la Laguna de Encinillas, Chihuahua, México. Master’s Thesis, Universidad Autónoma de Chihuahua, 251 p.
[5]  Hernández-Herrera, C. (2016) Geología de las rocas ígneas de la porción sur del cerro La Aguja Grande, Chihuahua, México. Seniors Thesis, Universidad Autónoma de Chihuahua, 67 p.
[6]  Secretaría de Agricultura y Recursos Hidráulicos (1980) Prospección Geofísica en los Valles de Sauz y Tabalaopa, Chihuahua Para Proporcionar Agua en Bloque a la Ciudad de Chihuahua. Technical report by PROYESCO S.A.
[7]  Secretaría de Agricultura y Recursos Hidráulicos (1985) Estudio Geohidrológico Cuantitativo de la Zona de El Sauz para Proporcionar agua en Bloque a la Ciudad de Chihuahua. Technical Report.
[8]  Secretaría de Agricultura y Recursos Hidráulicos (1988) Estudio de Prospección Geohidrológica en la Zona Norte del Valle del Sauz, para delimitar las áreas de explotación de la Segunda Etapa y Etapas Sucesivas, para Suministrar Agua a la Ciudad de Chihuahua.
[9]  Rivas-Lobera, L. (2016) Uso de técnicas resistivas en la porción Centro-Sur de la Laguna de Encinillas, Chihuahua, México. Seniors Thesis, Universidad Autónoma de Chihuahua, 76 p.
[10]  Villalobos-Gutiérrez, M.N. (2017) Caracterización geofísica de la Zona Norte de la Laguna de Encinillas, Chihuahua, México. Seniors Thesis, Universidad Autónoma de Chihuahua, 61 p.
[11]  Comisión Nacional del Agua (1998) Reactivación de Redes de Monitoreo de los acuíferos de los valles de: Casas Grandes, Cuauhtémoc, El Sauz-Encinillas y Ascensión en el estado de Chihuahua.
[12]  Comisión Nacional del Agua (2009) Actualización Geohidrológica de los acuíferos Las Palmas, Palomas-Guadalupe-Victoria, Los Moscos, Josefa Ortiz de Domínguez, El Sauz-Encinillas, Laguna El Diablo, Laguna La Vieja, y Chihuahua-Sacramento, en el estado de Chihuahua. Technical Report Made by the Universidad Autónoma de Chihuahua.
[13]  Zamarrón-Sosa, L. (2013) Análisis hidrogeoquímico de los acuíferos Chihuahua-Sacramento y El Sauz-Encinillas, Chihuahua, México. Master’s Thesis, Universidad Autónoma de Chihuahua, 126 p.
[14]  Comisión Nacional del Agua (2015) Actualización de la disponibilidad media anual de agua en el acuífero El Sauz-Encinillas (0807), Estado de Chihuahua. Diario Oficial de la Federación, 35 p.
[15]  Sifuentes-Acosta, K.I. (2018) Evaluación y caracterización de sedimentos de la Laguna de Encinillas para la determinación de contenido de arsénico y su relación con el acuífero. Master’s Thesis, Universidad Autónoma de Chihuahua, 66 p.
[16]  Cervantes-González, I.D. (2018) Caracterización geoquímica de sedimentos de Laguna de Encinillas, Chih., Méx. Seniors Thesis, Universidad Autónoma de Chihuahua, 79 p.
[17]  Comisión Nacional del Agua (1996) Simulación Hidrodinámica del Acuífero de El Sauz Encinillas, Chihuahua. Technicalreportmadeby Ingeniería de Evaluación y Prospección, S.A. de C.V.
[18]  Cruz-Medina, R. and Zesati-Pereyra, C. (2007) Generación de un Sistema de Información Geográfica para la Subcuenca Laguna de Encinillas, Edo. De Chih. Convención Nacional de Geografía, INEGI.
[19]  Franco-Estrada, B., Pinales-Munguía, A., Estrada-Gutiérrez, G., Villalba, M. and Franco-Rubio, M. (2012) Mathematical Modeling of Chihuahua-Sacramento, Tabalaopa-Aldama and El Sáuz-Encinillas Aquifers Using Modflow. Geological Society of America Abstracts with Programs, 44.
[20]  García, E. (2004) Modificaciones al sistema de clasificación climática de Koppen. 5th Edition, Instituto de Geografía, UNAM.
[21]  Servicio Geológico Mexicano (1998) Carta Geológico Minera Buenaventura H13-7, Map with Text, Scale 1:250,000.
[22]  Raisz, E. (1964) Landforms of Mexico, Map with Text, scale: 1:3,000,000. 2nd Edition.
[23]  Madrigal-Vázquez, F. (2015) Evaluación de la contribución que tiene el escurrimiento superficial en el sostenimiento de la Laguna de Encinillas. Universidad Autónoma de Chihuahua.
[24]  Todd, D.K. and Mays, L.W. (2004) Groundwater Hydrology. 3rd Edition, Wiley, Hoboken.
[25]  Yadav, G.S., Dasgupta, A.S., and Sinha, R., Lal, T., Srivastava, K.M. and Sigh, S.K. (2010) Shallow Sub-Surface Stratigraphy of Interfluves Inferred from Vertical Electric Soundings in Western Ganga Plains, India. Quaternary International, 227, 104-115.
https://doi.org/10.1016/j.quaint.2010.05.030
[26]  Wenner, F. (1916) A Method of Measuring Earth Resistivity. National Bureau of Standards, Scientific Paper, No. S-258, 469.
https://doi.org/10.6028/bulletin.282
[27]  Schlumberger, C. (1920) Etude sur la prospection électrique du soussol. V. Gauthier, Paris.
[28]  Riss, J., Fernandez-Martínez, J.F., Sirieix, C., Harmouzi, O., Marache, A. and Essahlaoui, A. (2011) A Methodology for Converting Traditional Vertical Electrical Soundings into 2D Resistivity Models: Application to the Saiss Basin, Morocco. Geophysics, 76, B225-B236.
https://doi.org/10.1190/geo2010-0080.1
[29]  Srinivasa Gowd, S. (2003) Electrical Resistivity Surveys to Delineate Groundwater Potential Aquifers in Peddavanka Watershed, Anantapur District, Andhra Pradesh, India. Environmental Geology, 1, 118-131.
http://link.springer.com/10.1007/s00254-004-1023-2
https://doi.org/10.1007/s00254-004-1023-2
[30]  Bobatchev, A., Modin, I. and Shevnin, V. (2001) IPI2WIN v. 2 for VES Data Interpretation, Users’ Manual, Moscow.
[31]  Sabet, M.A. (1975) Vertical Electrical Resistivity Soundings to Locate Ground Water Resources: A Feasibility Study Vertical Electrical Resistivity Soundings to Locate Ground Water Resources: A Feasibility Study, Blacksburg, Virginia.
[32]  Benkabbour, E., Toto, A. and Fakir, Y. (2004) Using DC Resistivity Method to Characterize the Geometry and the Salinity of the Plio-Quaternary Consolidated Coastal Aquifer of the Mamora Plain, Morocco. Environmental Geology, 45, 518-526.
https://doi.org/10.1007/s00254-003-0906-y
[33]  Himi, M., Tapias, J., Benabdelouahab, S., Saldi, A., Rivero, L., Elgettafi, M., El Mandour, A.E. and Casas, A. (2017) Geophysical Characterization of Saltwater Intrusion in a Coastal Aquifer: The Case of Martil-Alila Plain (North Morocco). Journal of African Earth Sciences, 126, 136-147.
https://doi.org/10.1016/j.jafrearsci.2016.11.011
[34]  Benabdelouahab, S., Saldi, A., Himi, M., El Messari, J.E.S., Casas, A., Mesmoudi, H. and Benabdelfadel, A. (2018) Using Resistivity Methods to Characterize the Geometry and Assess Groundwater Vulnerability of a Moroccan Coastal Aquifer. Groundwater for Sustainable Development, 7, 293-304.
https://doi.org/10.1016/j.gsd.2018.07.004

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133