Photoaging is an accelerating aging process of the skin due to prolonged exposure to UV from the Sun or other sources. Herbal extracts, natural compounds, and bioactive polypeptides have widely used in
cosmetic agents for protection of the skin against photoaging. This mini review briefly summarizes topical use of selected most common medicinal herbs, naturopathic chemicals, and bioactive peptides examined for skin protection.
References
[1]
D’Orazio, J., Jarrett, S., Amaro-Ortiz, A. and Scott, T. (2013) UV Radiation and the Skin. International Journal of Molecular Sciences, 14, 12222-12248.
https://doi.org/10.3390/ijms140612222
[2]
Battie, C., Jitsukawa, S., Bernerd, F., Del Bino, S., Marionnet, C. and Verschoore, M. (2014) New Insights in Photoaging, UVA Induced Damage and Skin Types. Experimental Dermatology, 23, 7-12. https://doi.org/10.1111/exd.12388
[3]
Ng, K.W. and Lau, W.M. (2015) Skin Deep: The Basics of Human Skin Structure and Drug Penetration.
[4]
Heck, D.E., Vetrano, A.M., Mariano, T.M. and Laskin, J.D. (2003) UVB Light Stimulates Production of Reactive Oxygen Species: Unexpected Role for Catalase. The Journal of Biological Chemistry, 278, 22432-22436.
https://doi.org/10.1074/jbc.C300048200
[5]
Burke, K.E. (2010) Photoaging: The Role of Oxidative Stress. Giornale Italiano di Dermatologia e Venereologia, 145, 445-459.
[6]
Rinnerthaler, M., Bischof, J., Streubel, M.K., Trost, A. and Richter, K. (2015) Oxidative Stress in Aging Human Skin. Biomolecules, 5, 545-589.
https://doi.org/10.3390/biom5020545
[7]
Lippke, J.A., Gordon, L.K., Brash, D.E. and Haseltine, W.A. (1981) Distribution of UV Light-Induced Damage in a Defined Sequence of Human DNA: Detection of Alkaline-Sensitive Lesions at Pyrimidine Nucleoside-Cytidine Sequences. Proceedings of the National Academy of Sciences of the United States of America, 78, 3388-3392. https://doi.org/10.1073/pnas.78.6.3388
[8]
Nishigori, C. (2006) Cellular Aspects of Photocarcinogenesis. Photochemical & Photobiological Sciences, 5, 208-214. https://doi.org/10.1039/B507471A
[9]
Schroeder, P., Calles, C. and Krutmann, J. (2009) Prevention of Infrared-A Radiation Mediated Detrimental Effects in Human Skin. Skin Therapy Letter, 14, 4-5.
[10]
Schroeder, P., Haendeler, J. and Krutmann, J. (2008) The Role of Near Infrared Radiation in Photoaging of the Skin. Experimental Gerontology, 43, 629-632.
https://doi.org/10.1016/j.exger.2008.04.010
[11]
Chiu, H.W., Chen, C.H., Chen, Y.J. and Hsu, Y.H. (2017) Far-Infrared Suppresses Skin Photoaging in Ultraviolet B-Exposed Fibroblasts and Hairless Mice. PLoS One, 12, e0174042. https://doi.org/10.1371/journal.pone.0174042
[12]
Hohn, A. and Grune, T. (2013) Lipofuscin: Formation, Effects and Role of Macroautophagy. Redox Biology, 1, 140-144.
https://doi.org/10.1016/j.redox.2013.01.006
[13]
Jung, T. and Grune, T. (2013) The Proteasome and the Degradation of Oxidized Proteins: Part I-Structure of Proteasomes. Redox Biology, 1, 178-182.
https://doi.org/10.1016/j.redox.2013.01.004
[14]
Jung, T. and Grune, T. (2008) The Proteasome and Its Role in the Degradation of Oxidized Proteins. IUBMB Life, 60, 743-752. https://doi.org/10.1002/iub.114
[15]
Widmer, R., Ziaja, I. and Grune, T. (2006) Protein Oxidation and Degradation during Aging: Role in Skin Aging and Neurodegeneration. Free Radical Research, 40, 1259-1268. https://doi.org/10.1080/10715760600911154
[16]
Sander, C.S., Chang, H., Salzmann, S., Muller, C.S., Ekanayake-Mudiyanselage, S., Elsner, P. and Thiele, J.J. (2002) Photoaging Is Associated with Protein Oxidation in Human Skin in Vivo. Journal of Investigative Dermatology, 118, 618-625.
https://doi.org/10.1046/j.1523-1747.2002.01708.x
[17]
Clos, A.L., Lasagna-Reeves, C.A., Wagner, R., Kelly, B., Jackson, G.R. and Kayed, R. (2010) Therapeutic Removal of Amyloid Deposits in Cutaneous Amyloidosis by Localised Intra-Lesional Injections of Anti-Amyloid Antibodies. Experimental Dermatology, 19, 904-911. https://doi.org/10.1111/j.1600-0625.2010.01121.x
[18]
Weids, A.J., Ibstedt, S., Tamás, M.J. and Grant, C.M. (2016) Distinct Stress Conditions Result in Aggregation of Proteins with Similar Properties. Scientific Reports, 6, Article No. 24554. https://doi.org/10.1038/srep24554
[19]
Squier, T.C. (2001) Oxidative Stress and Protein Aggregation during Biological Aging. Experimental Gerontology, 36, 1539-1550.
https://doi.org/10.1016/S0531-5565(01)00139-5
[20]
Stroo, E., Koopman, M., Nollen, E.A. and Mata-Cabana, A. (2017) Cellular Regulation of Amyloid Formation in Aging and Disease. Frontiers in Neuroscience, 11, 64.
https://doi.org/10.3389/fnins.2017.00064
[21]
Turner, D.P. (2015) Advanced Glycation End-Products: A Biological Consequence of Lifestyle Contributing to Cancer Disparity. Cancer Research, 75, 1925-1929.
https://doi.org/10.1158/0008-5472.CAN-15-0169
[22]
Yamagishi, S., Maeda, S., Matsui, T., Ueda, S., Fukami, K. and Okuda, S. (2012) Role of Advanced Glycation End Products (Ages) and Oxidative Stress in Vascular Complications in Diabetes. Biochimica et Biophysica Acta (BBA)-General Subjects, 1820, 663-671. https://doi.org/10.1016/j.bbagen.2011.03.014
[23]
Gkogkolou, P. and Bohm, M. (2012) Advanced Glycation End Products: Key Players in Skin Aging? Dermato-Endocrinology, 4, 259-270.
https://doi.org/10.4161/derm.22028
[24]
Rittie, L. and Fisher, G.J. (2015) Natural and Sun-Induced Aging of Human Skin. Cold Spring Harbor Perspectives in Medicine, 5, a015370.
https://doi.org/10.1101/cshperspect.a015370
[25]
Mohania, D., Chandel, S., Kumar, P., Verma, V., Digvijay, K., Tripathi, D., Choudhury, K., Mitten, S.K. and Shah, D. (2017) Ultraviolet Radiations: Skin Defense-Damage Mechanism. In: Ahmad, S., Ed., Ultraviolet Light in Human Health, Diseases and Environment. Advances in Experimental Medicine and Biology, Vol. 996, Springer, Cham, 71-87. https://doi.org/10.1007/978-3-319-56017-5_7
[26]
Maclaine, N.J. and Hupp, T.R. (2009) The Regulation of p53 by Phosphorylation: A Model for How Distinct Signals Integrate into the p53 Pathway. Aging (Albany NY), 1, 490-502. https://doi.org/10.18632/aging.100047
[27]
Molho-Pessach, V. and Lotem, M. (2007) Ultraviolet Radiation and Cutaneous Carcinogenesis. Current Problems in Dermatology, 35, 14-27.
https://doi.org/10.1159/000106407
[28]
Rezvani, H.R., Dedieu, S., North, S., Belloc, F., Rossignol, R., Letellier, T., de Verneuil, H., Taieb, A. and Mazurier, F. (2007) Hypoxia-Inducible Factor-1Alpha, a Key Factor in the Keratinocyte Response to UVB Exposure. The Journal of Biological Chemistry, 282, 16413-16422. https://doi.org/10.1074/jbc.M611397200
[29]
Ray, P.D., Huang, B.W. and Tsuji, Y. (2012) Reactive Oxygen Species (ROS) Homeostasis and Redox Regulation in Cellular Signaling. Cellular Signalling, 24, 981-990.
https://doi.org/10.1016/j.cellsig.2012.01.008
[30]
Bosch, R., Philips, N., Suarez-Perez, J.A., Juarranz, A., Devmurari, A., Chalensouk-Khaosaat, J. and Gonzalez, S. (2015) Mechanisms of Photoaging and Cutaneous Photocarcinogenesis, and Photoprotective Strategies with Phytochemicals. Antioxidants (Basel), 4, 248-268.
[31]
Bernerd, F. and Asselineau, D. (1998) UVA Exposure of Human Skin Reconstructed in Vitro Induces Apoptosis of Dermal Fibroblasts: Subsequent Connective Tissue Repair and Implications in Photoaging. Cell Death & Differentiation, 5, 792-802.
https://doi.org/10.1038/sj.cdd.4400413
[32]
Lee, C.H., Wu, S.B., Hong, C.H., Yu, H.S. and Wei, Y.H. (2013) Molecular Mechanisms of UV-Induced Apoptosis and Its Effects on Skin Residential Cells: The Implication in UV-Based Phototherapy. International Journal of Molecular Sciences, 14, 6414-6435. https://doi.org/10.3390/ijms14036414
[33]
Li, L., Chen, X. and Gu, H. (2016) The Signaling Involved in Autophagy Machinery in Keratinocytes and Therapeutic Approaches for Skin Diseases. Oncotarget, 7, 50682-50697. https://doi.org/10.18632/oncotarget.9330
[34]
Bennett, M.F., Robinson, M.K., Baron, E.D. and Cooper, K.D. (2008) Skin Immune Systems and Inflammation: Protector of the Skin or Promoter of Aging? Journal of Investigative Dermatology Symposium Proceedings, 13, 15-19.
https://doi.org/10.1038/jidsymp.2008.3
[35]
Fukunaga, A., Khaskhely, N.M., Sreevidya, C.S., Byrne, S.N. and Ullrich, S.E. (2008) Dermal Dendritic Cells, and Not Langerhans Cells, Play an Essential Role in Inducing an Immune Response. The Journal of Immunology, 180, 3057-3064.
https://doi.org/10.4049/jimmunol.180.5.3057
[36]
Siiskonen, H., Smorodchenko, A., Krause, K. and Maurer, M. (2018) Ultraviolet Radiation and Skin Mast Cells: Effects, Mechanisms and Relevance for Skin Diseases. Experimental Dermatology, 27, 3-8. https://doi.org/10.1111/exd.13402
[37]
Hart, P.H., Grimbaldeston, M.A., Swift, G.J., Jaksic, A., Noonan, F.P. and Finlay-Jones, J.J. (1998) Dermal Mast Cells Determine Susceptibility to Ultraviolet B-Induced Systemic Suppression of Contact Hypersensitivity Responses in Mice. The Journal of Experimental Medicine, 187, 2045-2053.
https://doi.org/10.1084/jem.187.12.2045
[38]
Watson, R.E., Gibbs, N.K., Griffiths, C.E. and Sherratt, M.J. (2014) Damage to Skin Extracellular Matrix Induced by UV Exposure. Antioxidants & Redox Signaling, 21, 1063-1077. https://doi.org/10.1089/ars.2013.5653
[39]
Helfrich, Y.R., Sachs, D.L. and Voorhees, J.J. (2008) Overview of Skin Aging and Photoaging. Dermatology Nursing, 20, 177-183; quiz 184.
[40]
Pandel, R., Poljsak, B., Godic, A. and Dahmane, R. (2013) Skin Photoaging and the Role of Antioxidants in Its Prevention. ISRN Dermatology, 2013, Article ID: 930164. https://doi.org/10.1155/2013/930164
[41]
Kumar, D., Rajora, G., Parkash, O., Himanshu, M., Antil, V. and Kumar, V. (2016) Herbal Cosmetics: An Overview. International Journal of Advanced Scientific Research, 1, 36-41.
[42]
Chermahini, S.H., Majid, F.A.A. and Sarmidi, M.R. (2011) Cosmeceutical Value of Herbal Extracts as Natural Ingredients and Novel Technologies in Anti-Aging. Journal of Medicinal Plants Research, 5, 3074-3077.
[43]
Saha, R. (2012) Cosmeceuticals and Herbal Drugs: Practical Uses. International Journal of Pharmaceutical Sciences and Research, 2, 59-65.
[44]
Korac, R.R. and Khambholja, K.M. (2011) Potential of Herbs in Skin Protection from Ultraviolet Radiation. Pharmacognosy Reviews, 5, 164-173.
[45]
Kostyuk, V., Potapovich, A., Albuhaydar, A.R., Mayer, W., De Luca, C. and Korkina, L. (2018) Natural Substances for Prevention of Skin Photoaging: Screening Systems in the Development of Sunscreen and Rejuvenation Cosmetics. Rejuvenation Research, 21, 91-101. https://doi.org/10.1089/rej.2017.1931
[46]
Kanlayavattanakul, M. and Lourith, N. (2015) An Update on Cutaneous Aging Treatment Using Herbs. Journal of Cosmetic and Laser Therapy, 17, 343-352.
https://doi.org/10.3109/14764172.2015.1039036
[47]
Kanlayavattanakul, M. and Lourith, N. (2018) Skin Hyperpigmentation Treatment Using Herbs: A Review of Clinical Evidences. Journal of Cosmetic and Laser Therapy, 20, 123-131. https://doi.org/10.1080/14764172.2017.1368666
[48]
Chanchal, D. and Swarnlata, S. (2009) Herbal Photoprotective Formulations and Their Evaluation. The Open Natural Products Journal, 2, 71-76.
https://doi.org/10.2174/1874848100902010071
[49]
Sahu, R.K., Roy, A., Matlam, M., Kumar Deshmukh, V., Dwivedi, J. and Kumar Jha, A. (2013) Review on Skin Aging and Compilation of Scientific Validated Medicinal Plants, Prominence to Flourish a Better Research Reconnoiters in Herbal Cosmetic. Research Journal of Medicinal Plants, 7, 1-22.
https://doi.org/10.3923/rjmp.2013.1.22
[50]
Cavinato, M., Waltenberger, B., Baraldo, G., Grade, C.V.C., Stuppner, H. and Jansen-Durr, P. (2017) Plant Extracts and Natural Compounds Used against UVB- Induced Photoaging. Biogerontology, 18, 499-516.
https://doi.org/10.1007/s10522-017-9715-7
[51]
Lee, K.H., Morris-Natschke, S., Qian, K., Dong, Y., Yang, X., Zhou, T., Belding, E., Wu, S.F., Wada, K. and Akiyama, T. (2012) Recent Progress of Research on Herbal Products Used in Traditional Chinese Medicine: The Herbs Belonging to the Divine Husbandman’s Herbal Foundation Canon (Shen Nong Ben Cao Jing). Journal of Traditional and Complementary Medicine, 2, 6-26.
https://doi.org/10.1016/S2225-4110(16)30066-9
[52]
Li, Y.H., Wu, Y., Wei, H.C., Xu, Y.Y., Jia, L.L., Chen, J., Yang, X.S., Dong, G.H., Gao, X.H. and Chen, H.D. (2009) Protective Effects of Green Tea Extracts on Photoaging and Photommunosuppression. Skin Research and Technology, 15, 338-345.
https://doi.org/10.1111/j.1600-0846.2009.00370.x
[53]
Lailiyah, I., Prasetyawan, S. and Aulani, A. (2017) Effect of Topical Application of Gel Aloe vera Extract on the UVB-Induced Skin Photoaging in Hairless Rats. The Journal of Pure and Applied Chemistry Research, 6, 112-116.
https://doi.org/10.21776/ub.jpacr.2017.006.02.321
[54]
Hong, S.W., Chun, J., Park, S., Lee, H.J., Im, J.P. and Kim, J.S. (2018) Aloe vera Is Effective and Safe in Short-Term Treatment of Irritable Bowel Syndrome: A Systematic Review and Meta-Analysis. Journal of Neurogastroenterology and Motility, 24, 528-535. https://doi.org/10.5056/jnm18077
[55]
Surjushe, A., Vasani, R. and Saple, D.G. (2008) Aloe vera: A Short Review. Indian Journal of Dermatology, 53, 163-166. https://doi.org/10.4103/0019-5154.44785
[56]
DeCarlo, A., Johnson, S., Poudel, A., Satyal, P., Bangerter, L. and Setzer, W.N. (2018) Chemical Variation in Essential Oils from the Oleo-Gum Resin of Boswellia carteri: A Preliminary Investigation. Chemistry & Biodiversity, 15, e1800047.
https://doi.org/10.1002/cbdv.201800047
[57]
Banerjee, S. and Chatterjee, J. (2015) Efficient Extraction Strategies of Tea (Camellia sinensis) Biomolecules. Journal of Food Science and Technology, 52, 3158-3168.
[58]
Mizutani, T. and Masaki, H. (2014) Anti-Photoaging Capability of Antioxidant Extract from Camellia Japonica Leaf. Experimental Dermatology, 23, 23-26.
https://doi.org/10.1111/exd.12395
[59]
Delshad, E., Yousefi, M., Sasannezhad, P., Rakhshandeh, H. and Ayati, Z. (2018) Medical Uses of Carthamus tinctorius L. (Safflower): A Comprehensive Review from Traditional Medicine to Modern Medicine. Electronic Physician, 10, 6672-6681.
https://doi.org/10.19082/6672
[60]
Auffray, B. (2007) Protection against Singlet Oxygen, the Main Actor of Sebum Squalene Peroxidation during Sun Exposure, Using Commiphora myrrha Essential Oil. International Journal of Cosmetic Science, 29, 23-29.
https://doi.org/10.1111/j.1467-2494.2007.00360.x
[61]
Ge, C.Y. and Zhang, J.L. (2018) Bioactive Sesquiterpenoids and Steroids from the Resinous Exudates of Commiphora myrrha. Natural Product Research, 1-7.
https://doi.org/10.1080/14786419.2018.1448811
[62]
Zeng, Q., Zhou, F., Lei, L., Chen, J., Lu, J., Zhou, J., Cao, K., Gao, L., Xia, F., Ding, S., Huang, L., Xiang, H., Wang, J., Xiao, Y., Xiao, R. and Huang, J. (2017) Ganoderma lucidum Polysaccharides Protect Fibroblasts against UVB-Induced Photoaging. Molecular Medicine Reports, 15, 111-116.
https://doi.org/10.3892/mmr.2016.6026
[63]
Batra, P., Sharma, A.K. and Khajuria, R. (2013) Probing Lingzhi or Reishi Medicinal Mushroom Ganoderma lucidum (Higher Basidiomycetes): A Bitter Mushroom with Amazing Health Benefits. International Journal of Medicinal Mushrooms, 15, 127-143. https://doi.org/10.1615/IntJMedMushr.v15.i2.20
[64]
Waqas, M.K., Akhtar, N., Mustafa, R., Jamshaid, M., Khan, H.M. and Murtaza, G. (2015) Dermatological and Cosmeceutical Benefits of Glycine Max (Soybean) and Its Active Components. Acta Poloniae Pharmaceutica, 72, 3-11.
[65]
Li, Y. and Hu, C. (2015) Hippophae rhamnoides L. 沙棘 (Shaji, Common Sea-Buckthorn). In: Liu, Y., Wang, Z. and Zhang, J., Eds., Dietary Chinese Herbs: Chemistry, Pharmacology and Clinical Evidence, Springer, Vienna, 403-415.
https://doi.org/10.1007/978-3-211-99448-1_46
[66]
Wojtyniak, K., Szymanski, M. and Matlawska, I. (2013) Leonurus cardiaca L. (Motherwort): A Review of Its Phytochemistry and Pharmacology. Phytotherapy Research, 27, 1115-1120. https://doi.org/10.1002/ptr.4850
[67]
Glynn, K.M., Anderson, P., Fast, D.J., Koedam, J., Rebhun, J.F. and Velliquette, R.A. (2018) Gromwell (Lithospermum erythrorhizon) Root Extract Protects against Glycation and Related Inflammatory and Oxidative Stress While Offering UV Absorption Capability. Experimental Dermatology, 27, 1043-1047.
https://doi.org/10.1111/exd.13706
[68]
Chang, M.J., Huang, H.C., Chang, H.C. and Chang, T.M. (2008) Cosmetic Formulations Containing Lithospermum erythrorhizon Root Extract Show Moisturizing Effects on Human Skin. Archives of Dermatological Research, 300, 317-323.
https://doi.org/10.1007/s00403-008-0867-9
[69]
Ishida, T. and Sakaguchi, I. (2007) Protection of Human Keratinocytes from UVB-Induced Inflammation Using Root Extract of Lithospermum erythrorhizon. Biological and Pharmaceutical Bulletin, 30, 928-934.
[70]
Kim, M.-R., Han, J., Chang, U.-J. and Suh, H.J. (2013) Protective Effect of Ginseng Leaf Extract against UVB-Induced Photoaging in Hairless Mouse. The FASEB Journal, 27, lb307-lb307.
[71]
Hwang, E., Park, S.Y., Yin, C.S., Kim, H.T., Kim, Y.M. and Yi, T.H. (2017) Antiaging Effects of the Mixture of Panax ginseng and Crataegus pinnatifida in Human Dermal Fibroblasts and Healthy Human Skin. Journal of Ginseng Research, 41, 69-77. https://doi.org/10.1016/j.jgr.2016.01.001
[72]
Lu, J.M., Yao, Q. and Chen, C. (2009) Ginseng Compounds: An Update on Their Molecular Mechanisms and Medical Applications. Current Vascular Pharmacology, 7, 293-302. https://doi.org/10.2174/157016109788340767
[73]
Liu, X.Y., Hwang, E., Park, B., Ngo, H.T.T., Xiao, Y.K. and Yi, T.H. (2018) Ginsenoside C-Mx Isolated from Notoginseng Stem-Leaf Ginsenosides Attenuates Ultraviolet B-Mediated Photoaging in Human Dermal Fibroblasts. Photochemistry and Photobiology, 94, 1040-1048. https://doi.org/10.1111/php.12940
[74]
Peng, M., Yi, Y.X., Zhang, T., Ding, Y. and Le, J. (2018) Stereoisomers of Saponins in Panax notoginseng (Sanqi): A Review. Frontiers in Pharmacology, 9, 188.
https://doi.org/10.3389/fphar.2018.00188
[75]
Chen, D., Du, Z., Lin, Z., Su, P., Huang, H., Ou, Z., Pan, W., Huang, S., Zhang, K., Zheng, X., Lin, L. and Zhang, L. (2018) The Chemical Compositions of Angelica pubescens Oil and Its Prevention of UV-B Radiation-Induced Cutaneous Photoaging. Chemistry & Biodiversity, 15, e1800235.
https://doi.org/10.1002/cbdv.201800235
[76]
Li, Y., Shi, S., Gao, J., Han, S., Wu, X., Jia, Y., Su, L., Shi, J. and Hu, D. (2016) Cryptotanshinone Downregulates the Profibrotic Activities of Hypertrophic Scar Fibroblasts and Accelerates Wound Healing: A Potential Therapy for the Reduction of Skin Scarring. Biomedicine & Pharmacotherapy, 80, 80-86.
https://doi.org/10.1016/j.biopha.2016.03.006
[77]
Zhang, X.-L., Chen, M., Zhu, L.-L. and Zhou, Q. (2017) Therapeutic Risk and Benefits of Concomitantly Using Herbal Medicines and Conventional Medicines: From the Perspectives of Evidence Based on Randomized Controlled Trials and Clinical Risk Management. Evidence-Based Complementary and Alternative Medicine, 2017, Article ID: 9296404. https://doi.org/10.1155/2017/9296404
[78]
Fu, P.P., Xia, Q., Zhao, Y., Wang, S., Yu, H. and Chiang, H.M. (2013) Phototoxicity of Herbal Plants and Herbal Products. Journal of Environmental Science and Health. Part C, Environmental Carcinogenesis & Ecotoxicology Reviews, 31, 213-255.
https://doi.org/10.1080/10590501.2013.824206
[79]
Gaspar, L.R., Tharmann, J., Maia Campos, P.M. and Liebsch, M. (2013) Skin Phototoxicity of Cosmetic Formulations Containing Photounstable and Photostable UV-Filters and Vitamin A Palmitate. Toxicology in Vitro, 27, 418-425.
https://doi.org/10.1016/j.tiv.2012.08.006
[80]
Oh, M.C., Piao, M.J., Fernando, P.M., Han, X., Madduma Hewage, S.R., Park, J.E., Ko, M.S., Jung, U., Kim, I.G. and Hyun, J.W. (2016) Baicalein Protects Human Skin Cells against Ultraviolet B-Induced Oxidative Stress. Biomolecules & Therapeutics, 24, 616-622. https://doi.org/10.4062/biomolther.2016.022
[81]
Min, W., Liu, X., Qian, Q., Lin, B., Wu, D., Wang, M., Ahmad, I., Yusuf, N. and Luo, D. (2014) Effects of Baicalin against UVA-Induced Photoaging in Skin Fibroblasts. The American Journal of Chinese Medicine, 42, 709-727.
https://doi.org/10.1142/S0192415X14500463
[82]
Pedretti, A., Capezzera, R., Zane, C., Facchinetti, E. and Calzavara-Pinton, P. (2010) Effects of Topical Boswellic Acid on Photo and Age-Damaged Skin: Clinical, Biophysical, and Echographic Evaluations in a Double-Blind, Randomized, Split-Face Study. Planta Medica, 76, 555-560. https://doi.org/10.1055/s-0029-1240581
[83]
Calzavara-Pinton, P., Zane, C., Facchinetti, E., Capezzera, R. and Pedretti, A. (2010) Topical Boswellic Acids for Treatment of Photoaged Skin. Dermatologic Therapy, 23, S28-S32. https://doi.org/10.1111/j.1529-8019.2009.01284.x
[84]
Yao, K., Chen, H., Liu, K., Langfald, A., Yang, G., Zhang, Y., Yu, D.H., Kim, M.O., Lee, M.H., Li, H., Bae, K.B., Kim, H.G., Ma, W.Y., Bode, A.M., Dong, Z. and Dong, Z. (2014) Kaempferol Targets RSK2 and MSK1 to Suppress UV Radiation-Induced Skin Cancer. Cancer Prevention Research (Phila), 7, 958-967.
https://doi.org/10.1158/1940-6207.CAPR-14-0126
[85]
Shetty, P.K., Venuvanka, V., Jagani, H.V., Chethan, G.H., Ligade, V.S., Musmade, P.B., Nayak, U.Y., Reddy, M.S., Kalthur, G., Udupa, N., Rao, C.M. and Mutalik, S. (2015) Development and Evaluation of Sunscreen Creams Containing Morin-Encapsulated Nanoparticles for Enhanced UV Radiation Protection and Antioxidant Activity. International Journal of Nanomedicine, 10, 6477-6491.
[86]
Caselli, A., Cirri, P., Santi, A. and Paoli, P. (2016) Morin: A Promising Natural Drug. Current Medicinal Chemistry, 23, 774-791.
https://doi.org/10.2174/0929867323666160106150821
[87]
Kang, N.J., Jung, S.K., Lee, K.W. and Lee, H.J. (2011) Myricetin Is a Potent Chemopreventive Phytochemical in Skin Carcinogenesis. Annals of the New York Academy of Sciences, 1229, 124-132. https://doi.org/10.1111/j.1749-6632.2011.06122.x
[88]
Jung, S.K., Lee, K.W., Kim, H.Y., Oh, M.H., Byun, S., Lim, S.H., Heo, Y.S., Kang, N.J., Bode, A.M., Dong, Z. and Lee, H.J. (2010) Myricetin Suppresses UVB-Induced Wrinkle Formation and MMP-9 Expression by Inhibiting Raf. Biochemical Pharmacology, 79, 1455-1461. https://doi.org/10.1016/j.bcp.2010.01.004
[89]
Huang, J.H., Huang, C.C., Fang, J.Y., Yang, C., Chan, C.M., Wu, N.L., Kang, S.W. and Hung, C.F. (2010) Protective Effects of Myricetin against Ultraviolet-B-Induced Damage in Human Keratinocytes. Toxicology in Vitro, 24, 21-28.
https://doi.org/10.1016/j.tiv.2009.09.015
[90]
El-Mahdy, M.A., Zhu, Q., Wang, Q.E., Wani, G., Patnaik, S., Zhao, Q., Arafa, E.-S., Barakat, B., Mir, S.N. and Wani, A.A. (2008) Naringenin Protects HaCaT Human Keratinocytes against UVB-Induced Apoptosis and Enhances the Removal of Cyclobutane Pyrimidine Dimers from the Genome. Photochemistry and Photobiology, 84, 307-316. https://doi.org/10.1111/j.1751-1097.2007.00255.x
[91]
Jung, S.K., Ha, S.J., Jung, C.H., Kim, Y.T., Lee, H.K., Kim, M.O., Lee, M.H., Mottamal, M., Bode, A.M., Lee, K.W. and Dong, Z. (2016) Naringenin Targets ERK2 and Suppresses UVB-Induced Photoaging. Journal of Cellular and Molecular Medicine, 20, 909-919. https://doi.org/10.1111/jcmm.12780
[92]
Tanaka, S., Sato, T., Akimoto, N., Yano, M. and Ito, A. (2004) Prevention of UVB-Induced Photoinflammation and Photoaging by a Polymethoxy Flavonoid, Nobiletin, in Human Keratinocytes in Vivo and in Vitro. Biochemical Pharmacology, 68, 433-439. https://doi.org/10.1016/j.bcp.2004.04.006
[93]
Lee, S., Lim, J.M., Jin, M.H., Park, H.K., Lee, E.J., Kang, S., Kim, Y.S. and Cho, W.G. (2006) Partially Purified Paeoniflorin Exerts Protective Effects on UV-Induced DNA Damage and Reduces Facial Wrinkles in Human Skin. Journal of Cosmetic Science, 57, 57-64.
[94]
Kong, L., Wang, S., Wu, X., Zuo, F., Qin, H. and Wu, J. (2016) Paeoniflorin Attenuates Ultraviolet B-Induced Apoptosis in Human Keratinocytes by Inhibiting the ROS-p38-p53 Pathway. Molecular Medicine Reports, 13, 3553-3558.
https://doi.org/10.3892/mmr.2016.4953
[95]
Marini, A., Grether-Beck, S., Jaenicke, T., Weber, M., Burki, C., Formann, P., Brenden, H., Schonlau, F. and Krutmann, J. (2012) Pycnogenol® Effects on Skin Elasticity and Hydration Coincide with Increased Gene Expressions of Collagen Type I and Hyaluronic Acid Synthase in Women. Skin Pharmacology and Physiology, 25, 86-92. https://doi.org/10.1159/000335261
[96]
Cho, H.S., Lee, M.H., Lee, J.W., No, K.O., Park, S.K., Lee, H.S., Kang, S., Cho, W.G., Park, H.J., Oh, K.W. and Hong, J.T. (2007) Anti-Wrinkling Effects of the Mixture of Vitamin C, Vitamin E, Pycnogenol and Evening Primrose Oil, and Molecular Mechanisms on Hairless Mouse Skin Caused by Chronic Ultraviolet B Irradiation. Photodermatology, Photoimmunology & Photomedicine, 23, 155-162.
https://doi.org/10.1111/j.1600-0781.2007.00298.x
[97]
Nan, W., Ding, L., Chen, H., Khan, F.U., Yu, L., Sui, X. and Shi, X. (2018) Topical Use of Quercetin-Loaded Chitosan Nanoparticles against Ultraviolet B Radiation. Frontiers in Pharmacology, 9, 826. https://doi.org/10.3389/fphar.2018.00826
[98]
Maramaldi, G., Togni, S., Pagin, I., Giacomelli, L., Cattaneo, R., Eggenhoffner, R. and Burastero, S.E. (2016) Soothing and Anti-Itch Effect of Quercetin Phytosome in Human Subjects: A Single-Blind Study. Clinical, Cosmetic and Investigational Dermatology, 9, 55-62. https://doi.org/10.2147/CCID.S98890
[99]
Peres, D.A., de Oliveira, C.A., da Costa, M.S., Tokunaga, V.K., Mota, J.P., Rosado, C., Consiglieri, V.O., Kaneko, T.M., Velasco, M.V. and Baby, A.R. (2016) Rutin Increases Critical Wavelength of Systems Containing a Single UV Filter and with Good Skin Compatibility. Skin Research and Technology, 22, 325-333.
https://doi.org/10.1111/srt.12265
[100]
Choi, S.J., Lee, S.N., Kim, K., Joo, D.H., Shin, S., Lee, J., Lee, H.K., Kim, J., Kwon, S.B., Kim, M.J., Ahn, K.J., An, I.S., An, S. and Cha, H.J. (2016) Biological Effects of Rutin on Skin Aging. International Journal of Molecular Medicine, 38, 357-363.
https://doi.org/10.3892/ijmm.2016.2604
[101]
Yuan, X.Y., Pang, X.W., Zhang, G.Q. and Guo, J.Y. (2017) Salidroside’s Protection against UVB-Mediated Oxidative Damage and Apoptosis Is Associated with the Upregulation of Nrf2 Expression. Photomedicine and Laser Surgery, 35, 49-56.
https://doi.org/10.1089/pho.2016.4151
[102]
Wu, D., Yuan, P., Ke, C., Xiong, H., Chen, J., Guo, J., Lu, M., Ding, Y., Fan, X., Duan, Q., Shi, F. and Zhu, F. (2016) Salidroside Suppresses Solar Ultraviolet-Induced Skin Inflammation by Targeting Cyclooxygenase-2. Oncotarget, 7, 25971-25982.
[103]
Kimura, Y. and Sumiyoshi, M. (2011) Effects of Baicalein and Wogonin Isolated from Scutellaria baicalensis Roots on Skin Damage in Acute UVB-Irradiated Hairless Mice. European Journal of Pharmacology, 661, 124-132.
https://doi.org/10.1016/j.ejphar.2011.04.033
[104]
Chi, Y.S., Lim, H., Park, H. and Kim, H.P. (2003) Effects of Wogonin, a Plant Flavone from Scutellaria radix, on Skin Inflammation: In Vivo Regulation of Inflammation-Associated Gene Expression. Biochemical Pharmacology, 66, 1271-1278.
https://doi.org/10.1016/S0006-2952(03)00463-5
[105]
Fields, K., Falla, T.J., Rodan, K. and Bush, L. (2009) Bioactive Peptides: Signaling the Future. Journal of Cosmetic Dermatology, 8, 8-13.
https://doi.org/10.1111/j.1473-2165.2009.00416.x
[106]
Linder, J. (2012) The Science behind Peptides. Plastic Surgical Nursing, 32, 71-72.
https://doi.org/10.1097/PSN.0b013e3182577344
[107]
Schagen, S. (2017) Topical Peptide Treatments with Effective Anti-Aging Results. Cosmetics, 4, 16. https://doi.org/10.3390/cosmetics4020016
[108]
Farwick, M., Grether-Beck, S., Marini, A., Maczkiewitz, U., Lange, J., Kohler, T., Lersch, P., Falla, T., Felsner, I., Brenden, H., Jaenicke, T., Franke, S. and Krutmann, J. (2011) Bioactive Tetrapeptide GEKG Boosts Extracellular Matrix Formation: In Vitro and in Vivo Molecular and Clinical Proof. Experimental Dermatology, 20, 602-604. https://doi.org/10.1111/j.1600-0625.2011.01307.x
[109]
Marini, A., Farwick, M., Grether-Beck, S., Brenden, H., Felsner, I., Jaenicke, T., Weber, M., Schild, J., Maczkiewitz, U., Kohler, T., Bonfigli, A., Pagani, V. and Krutmann, J. (2012) Modulation of Skin Pigmentation by the Tetrapeptide PKEK: In Vitro and in Vivo Evidence for Skin Whitening Effects. Experimental Dermatology, 21, 140-146. https://doi.org/10.1111/j.1600-0625.2011.01415.x
[110]
Mathur, D., Mehta, A., Firmal, P., Bedi, G., Sood, C., Gautam, A. and Raghava, G.P.S. (2018) TopicalPdb: A Database of Topically Delivered Peptides. PLoS ONE, 13, e0190134. https://doi.org/10.1371/journal.pone.0190134
[111]
Pyun, H.B., Kim, M., Park, J., Sakai, Y., Numata, N., Shin, J.Y., Shin, H.J., Kim, D.U. and Hwang, J.K. (2012) Effects of Collagen Tripeptide Supplement on Photoaging and Epidermal Skin Barrier in UVB-Exposed Hairless Mice. Preventive Nutrition and Food Science, 17, 245-253. https://doi.org/10.3746/pnf.2012.17.4.245
[112]
Aldag, C., Nogueira Teixeira, D. and Leventhal, P.S. (2016) Skin Rejuvenation Using Cosmetic Products Containing Growth Factors, Cytokines, and Matrikines: A Review of the Literature. Clinical, Cosmetic and Investigational Dermatology, 9, 411-419. https://doi.org/10.2147/CCID.S116158
[113]
Fitzpatrick, R.E. and Rostan, E.F. (2003) Reversal of Photodamage with Topical Growth Factors: A Pilot Study. Journal of Cosmetic and Laser Therapy, 5, 25-34.
https://doi.org/10.1080/14764170310000817
[114]
Gorouhi, F. and Maibach, H.I. (2009) Role of Topical Peptides in Preventing or Treating Aged Skin. International Journal of Cosmetic Science, 31, 327-345.
https://doi.org/10.1111/j.1468-2494.2009.00490.x
[115]
Malerich, S. and Berson, D. (2014) Next Generation Cosmeceuticals: The Latest in Peptides, Growth Factors, Cytokines, and Stem Cells. Dermatologic Clinics, 32, 13-21. https://doi.org/10.1016/j.det.2013.09.003
[116]
Bos, J.D. and Meinardi, M.M. (2000) The 500 Dalton Rule for the Skin Penetration of Chemical Compounds and Drugs. Experimental Dermatology, 9, 165-169.
https://doi.org/10.1034/j.1600-0625.2000.009003165.x
[117]
Benson, H.A. and Namjoshi, S. (2008) Proteins and Peptides: Strategies for Delivery to and Across the Skin. Journal of Pharmaceutical Sciences, 97, 3591-3610.
https://doi.org/10.1002/jps.21277
[118]
Kumar, S., Zakrewsky, M., Chen, M., Menegatti, S., Muraski, J.A. and Mitragotri, S. (2015) Peptides as Skin Penetration Enhancers: Mechanisms of Action. Journal of Controlled Release, 199, 168-178. https://doi.org/10.1016/j.jconrel.2014.12.006
[119]
Priyanka, K. and Singh, S. (2014) A Review on Skin Targeted Delivery of Bioactives as Ultradeformable Vesicles: Overcoming the Penetration Problem. Current Drug Targets, 15, 184-198. https://doi.org/10.2174/1389450115666140113100338
[120]
Man, M., Hupe, M., Mackenzie, D., Kim, H., Oda, Y., Crumrine, D., Lee, S.H., Martin-Ezquerra, G., Trullas, C., Mauro, T.M., Feingold, K.R., Elias, P.M. and Man, M.Q. (2011) A Topical Chinese Herbal Mixture Improves Epidermal Permeability Barrier Function in Normal Murine Skin. Experimental Dermatology, 20, 285-288.
https://doi.org/10.1111/j.1600-0625.2010.01205.x
[121]
Hou, M., Sun, R., Hupe, M., Kim, P.L., Park, K., Crumrine, D., Lin, T.K., Santiago, J.L., Mauro, T.M., Elias, P.M. and Man, M.Q. (2013) Topical Apigenin Improves Epidermal Permeability Barrier Homoeostasis in Normal Murine Skin by Divergent Mechanisms. Experimental Dermatology, 22, 210-215.
https://doi.org/10.1111/exd.12102
[122]
Hou, M., Man, M., Man, W., Zhu, W., Hupe, M., Park, K., Crumrine, D., Elias, P.M. and Man, M.Q. (2012) Topical Hesperidin Improves Epidermal Permeability Barrier Function and Epidermal Differentiation in Normal Murine Skin. Experimental Dermatology, 21, 337-340. https://doi.org/10.1111/j.1600-0625.2012.01455.x
[123]
Abraham, A.N., Sharma, T.K., Bansal, V. and Shukla, R. (2018) Phytochemicals as Dynamic Surface Ligands to Control Nanoparticle-Protein Interactions. ACS Omega, 3, 2220-2229. https://doi.org/10.1021/acsomega.7b01878
[124]
Murakami, A. (2018) Non-Specific Protein Modifications May Be Novel Mechanism Underlying Bioactive Phytochemicals. Journal of Clinical Biochemistry and Nutrition, 62, 115-123.
[125]
Tsuchiya, H. (2015) Membrane Interactions of Phytochemicals as Their Molecular Mechanism Applicable to the Discovery of Drug Leads from Plants. Molecules, 20, 18923-18966. https://doi.org/10.3390/molecules201018923
[126]
Huang, W., Shen, S., Nimalaratne, C., Li, S., Majumder, K. and Wu, J. (2012) Effects of Addition of Egg Ovotransferrin-Derived Peptides on the Oxygen Radical Absorbance Capacity of Different Teas. Food Chemistry, 135, 1600-1607.
https://doi.org/10.1016/j.foodchem.2012.05.093