全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Analysis of Observed and Modelled Near-Surface Wind Extremes over the Sub-Arctic Northeast Pacific

DOI: 10.4236/acs.2019.91010, PP. 146-158

Keywords: Extreme Wind Speed Analysis, Modelled Extreme Wind Speed, Arctic and Sub-Arctic Circulation

Full-Text   Cite this paper   Add to My Lib

Abstract:

Wind speed extremes in the sub-Arctic realm of the North-East Pacific region were investigated through extreme value analysis of wind speed obtained from wind simulations of the COSMO-CLM (Consortium for Small-scale Modelling, climate version) mesoscale model, as well as using observed data. The analysis showed that the set of wind speed extremes obtained from observations is a mixture of two different subsets each neatly described by the Weibull distribution. Using special metaphoric terminology, they are labelled as “Black Swans” and “Dragons”. The “Dragons” are responsible for strongest extremes. It has been shown that both reanalysis and GCM (general circulation model) data have no “Dragons”. This means that such models underestimate wind speed maxima, and the important circulation process generating the anomalies is not simulated. The COSMO-CLM data have both “Black Swans” and “Dragons”. This evidence provides a clue that an atmospheric model with a detailed spatial resolution (we used in this work the data from domain with 13.2 km spatial resolution) does reproduce the special mechanism responsible for the generation of the largest wind speed extremes. However, a more thorough analysis shows that the differences in the parameters of the cumulative distribution functions are still significant. The ratio between the modelled Dragons and Black Swans can reach up to only 10%. It is much less than 30%, which was the level established for observations.

References

[1]  Beirlant, J., Goegebeur, Y., Segers, J., Teugels, J., De Waal, D. and Ferro, C. (2004) Statistics of Extremes: Theory and Applications. Willey Series in Probability and Statistics. John Wiley & Sons Ltd., Chichester. https://doi.org/10.1002/0470012382
[2]  Coles, S. (2001) An Introduction to Statistical Modeling of Extreme Values. Springer Series in Statistics. Springer-Verlag, Berlin.
[3]  de Haan, L. and Ferreira, A. (2006) Extreme Value Theory: An Introduction. Springer Series in Operations Research and Financial Engineering. Springer, Berlin.
https://doi.org/10.1007/0-387-34471-3
[4]  Brabson, B.B. and Palutikof, J.P. (2000) Tests of the Generalized Pareto Distribution for Predicting Extreme Wind Speeds. Journal of Applied Meteorology and Climatology, 39, 1627-1640.
https://doi.org/10.1175/1520-0450(2000)039<1627:TOTGPD>2.0.CO;2
[5]  Cook, N.J. (2014) Consolidation of Analysis Methods for Sub-Annual Extreme Wind Speeds. Meteorological Applications, 21, 403-414.
https://doi.org/10.1002/met.1355
[6]  Palutikof, J.P., Brabson, B.B., Lister, D.H. and Adcock, S.T. (1999) A Review of Methods to Calculate Extreme Wind Speeds. Meteorological Application, 6, 119-132.
https://doi.org/10.1017/S1350482799001103
[7]  Kislov, A. and Matveeva, T. (2016) An Extreme Value Analysis of Wind Speed over the European and Siberian Parts of Arctic Region. Atmospheric and Climate Sciences, 6, 205-223. https://doi.org/10.4236/acs.2016.62018
[8]  Taleb, N.N. (2010) The Black Swan: The Impact of the Highly Improbable. 2nd Edition, Penguin, New York.
[9]  Sornette, D. (2009) Dragon-Kings, Black Swans and the Prediction of Crises. International Journal of Terraspace Science and Engineering, 2, 1-18.
https://doi.org/10.2139/ssrn.1596032
[10]  Laherrère, J. and Sornette, D. (1999) Stretched Exponential Distributions in Nature and economy: Fat Tails with Characteristic Scales. The European Physical Journal B, 2, 525-539. https://doi.org/10.1007/s100510050276
[11]  Kislov, A., Rivin, G., Platonov, V., Varentsov, M.I., Rozinkina, I.A., Nikitin, M.A. and Chumakov, M.M. (2018) Mesoscale Atmospheric Modelling of Extreme Velocities over the Sea of Okhotsk and Sakhalin Island. Izvestiya, Atmospheric and Oceanic Physics, 54, 322-326. https://doi.org/10.1134/S0001433818040242
[12]  Tye, M.R., Stephenson, D.B., Holland, G.J. and Katz, R.W. (2014) A Weibull Approach for Improving Climate Model Projections of Tropical Cyclone Wind-Speed Distributions. Journal of Climate, 27, 6119-6133.
https://doi.org/10.1175/JCLI-D-14-00121.1
[13]  Coles, S. and Walshaw, D. (1994) Directional Modelling of Extreme Wind Speeds. Journal of the Royal Statistical Society: Series C (Applied Statistics), 43, 139-157.
[14]  Cook, N.J. (1985) The Designer’s Guide to Wind Loading of Building Structures. Part 1: Background, Damage Survey, Wind Data and Structural Classification. Building Research Establishment. Garston and Butterworths, London.
[15]  Gusella, V. (1991) Estimation of Extreme Winds from Short-Term Records. Journal of Structural Engineering, 117, 375-390. |
https://doi.org/10.1061/(ASCE)0733-9445(1991)117:2(375)
[16]  Arakawa, A. and Lamb, V.R. (1977) Computational Design of the Basic Dynamical Processes of the UCLA General Circulation Model. Methods in Computational Physics, 17, 173-265. https://doi.org/10.1016/B978-0-12-460817-7.50009-4
[17]  Gal-Chen, T. and Somerville, R.C.J. (1975) On the Use of a Coordinate Transformation for the Solution of the Navier-Stokes Equations. Journal of Computational Physics, 17, 209-228.
[18]  Schär, C., Leuenberger, D., Fuhrer, O., Lüthi, D. and Girard, C. (2002) A New Terrain-Following Vertical Coordinate Formulation for Atmospheric Prediction Models. Monthly Weather Review, 130, 2459-2480.
https://doi.org/10.1175/1520-0493(2002)130<2459:ANTFVC>2.0.CO;2
[19]  Tiedtke, M. (1989) A Comprehensive Mass Flux Scheme for Cumulus Parameterization in Large-Scale Models. Monthly Weather Review, 117, 1779-1800.
https://doi.org/10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2
[20]  Ritter, B. and Geleyn, J.F. (1992) A Comprehensive Radiation Scheme for Numerical Weather Prediction Models with Potential Applications in Climate Simulations. Monthly Weather Review, 120, 303-325.
https://doi.org/10.1175/1520-0493(1992)120<0303:ACRSFN>2.0.CO;2
[21]  Dee, D.P., Uppala, S., Simmons, A., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M.A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A.C.M., van de Berg, L., Bidlot, J.-R., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hersbach, H., Hólm, E.V., Isaksen, L., Kållberg, P.W., Köhler, M., Matricardi, M., McNally, A., Monge-Sanz, B.M., Morcrette, J.-J., Park, B.-K., Peubey, C., De Rosnay, P., Tavolato, C., Thepaut, J.-J. and Vitart, F. (2011) The ERA-Interim Reanalysis: Configuration and Performance of the Data Assimilation System. Quarterly Journal of the Royal Meteorological Society, 553, 553-597.
https://doi.org/10.1002/qj.828
[22]  Anders, I., Paumann, M., Chimani, B. and Hofstätter, M. (2014) Impacts of Using Spectral Nudging on COSMO-CLM Simulations of Single Vb-Events. 3rd International Lund Regional-Scale Climate Modelling Workshop Proceedings, Lund, 16-19 June 2014, 154-155.
[23]  Von Storch, H., Langenberg, H. and Feser, F. (2000) A Spectral Nudging Technique for Dynamical Downscaling Purposes. Monthly Weather Review, 128, 3664-3673.
https://doi.org/10.1175/1520-0493(2000)128<3664:ASNTFD>2.0.CO;2
[24]  Schulz, J.-P. and Heise, E. (2003) A New Scheme for Diagnosting Near-Surface Convective Gusts. COSMO Newsletter, 3, 221-225.
[25]  Sornette, D. and Ouillon, G. (2012) Dragon-Kings: Mechanisms, Statistical Methods and Empirical Evidence. The European Physical Journal Special Topics, 205, 1-26.
https://doi.org/10.1140/epjst/e2012-01559-5
[26]  Janczura, J. and Weron, R. (2012) Black Swans or Dragon-Kings? A Simple Test for Deviations from the Power Law. The European Physical Journal Special Topics, 205, 79-93. https://doi.org/10.1140/epjst/e2012-01563-9
[27]  Wheatley, S. and Sornette, D. (2015) Multiple Outlier Detection in Samples with Exponential & Pareto Tails: Redeeming the Inward Approach & Detecting Dragon Kings.
[28]  Mantegna, R.N. and Stanley, H.E. (1994) Stochastic Process with Ultraslow Convergence to a Gaussian: The Truncated Lévy Flight. Physical Review Letters, 73, 2946-2949. https://doi.org/10.1103/PhysRevLett.73.2946
[29]  Drobinski, P., Coulais, C. and Jourdier, B. (2015) Surface Wind-Speed Statistics Modelling: Alternatives to the Weibull Distribution and Performance Evaluation. Boundary-Layer Meteorology, 157, 97-123.
https://doi.org/10.1007/s10546-015-0035-7
[30]  Mao, W. and Rychlik, I. (2018) Stochastic Spatio-Temporal Model for Wind Speed Variation in the Arctic. Ocean Engineering, 165, 237-251.
https://doi.org/10.1016/j.oceaneng.2018.07.043
[31]  Yan, Z., Bate, S., Chandler, R.E., Isham, V. and Wheater, H. (2002) An Analysis of Daily Maximum Wind Speed in Northwestern Europe Using Generalized Linear Models. Journal of Climate, 15, 2073-2088.
https://doi.org/10.1175/1520-0442(2002)015<2073:AAODMW>2.0.CO;2
[32]  Hundecha, Y., St-Hilaire, A., Ouarda, T.B.M.J., El Adlouni, S. and Gachon, P. (2008) A Nonstationary Extreme Value Analysis for the Assessment of Changes in Extreme Annual Wind Speed over the Gulf of St. Lawrence, Canada. Journal of Applied Meteorology and Climatology, 47, 2745-2759.
https://doi.org/10.1175/2008JAMC1665.1
[33]  Hughes, M. and Cassano, J.J. (2015) The Climatological Distribution of Extreme Arctic Winds and Implications for Ocean and Sea Ice Processes. Journal of Geophysical Research: Atmospheres, 120, 7358-7737.
https://doi.org/10.1002/2015JD023189
[34]  Stegall, S.T. and Zhang, J. (2012) Wind Field Climatology, Changes, and Extremes in the Chukchi-Beaufort Seas and Alaska North Slope during 1979-2009. Journal of Climate, 25, 8075-8089. https://doi.org/10.1175/JCLI-D-11-00532.1
[35]  Brasseur, O. (2001) Development and Application of a Physical Approach to Estimating Wind Gusts. Monthly Weather Review, 129, 5-25.
https://doi.org/10.1175/1520-0493(2001)129<0005:DAAOAP>2.0.CO;2
[36]  Stensrud, D.J. (1996) Importance of Low-Level Jets to Climate: A Review. Journal of Climate, 9, 1698-1711.
https://doi.org/10.1175/1520-0442(1996)009<1698:IOLLJT>2.0.CO;2

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133