全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Analysis of Yellow Water in Liquor Fermentation with Sensor Array

DOI: 10.4236/jst.2019.91001, PP. 1-11

Keywords: Yellow Water, Sensor Array, PCA, Multiple Linear Regression, Liquor

Full-Text   Cite this paper   Add to My Lib

Abstract:

Yellow water is a by-product of liquor in the solid state fermentation process, and contains a large amount of nutrients, such as acids, esters, alcohols and aldehydes produced by fermentation. The components in the yellow water reflect the fermentation information to a certain extent, so the fermentation process can be monitored by detecting the yellow water component online. A sensor array detection device is designed for detecting yellow water. In addition, chemical titration is used to obtain data such as acidity, reducing sugar and starch of yellow water. Principal component analysis and discriminant function analysis were performed on the data; and a multivariate linear regression was used to establish a prediction model for the data. The results showed that the prediction bias for acidity and alcohol was small, 0.39 and 0.43, respectively.

References

[1]  Xu, Y.C., Sheng, J., Liu, A.J., et al. (2017) Antibacterial Characteristics and Stability of Liquor by-product of Liquor Fermentation. Food Science, 38, 122-126.
[2]  Guo, W. (2010) Comprehensive Utilization of Yellow Wine, a By-Product of Liquor Fermentation. Northwest University, Xi’an.
[3]  Feng, X.Z., Deng, J., Xie, J., et al. (2017) Analysis on the Status Quo of Comprehensive Utilization of Yellow Wine By-Product of Liquor Brewing. China Brewing, 36, 6-9.
[4]  Xu, C.H., Yu, Y.G. and Zhang, W.W. (2014) Progress in Physical and Chemical Analysis and Application of Huangshui. Journal of Food Safety and Quality, No. 12, 4011-4017.
[5]  Liu, Q. and Zhang, Y.T. (2001) Comprehensive Utilization of Yellow Water, a by-product of Winemaking. Journal of Brewery, 28, 39-42.
[6]  Yin, L.G., Feng, X.Y., Xu, D.F., et al. (2014) Analysis and Application of Trace Matter in Wuliang Luzhou-flavor Liquor Yellow Water. Journal of Brewing Science, No. 4, 83-85.
[7]  Sheng, J., Xu, Y.C., Ji, H.Y., et al. (2017) Analysis of Organic Components in Yellow Water Fermentation by-products of Liquor. Food Science and Technology, 38, 231-235.
[8]  Xian, Y.H. and Li, X.M. (2015) Liquor Analysis and Detection Technology. China Light Industry Press, Beijing, 152-155.
[9]  Legin, A., Rudnitskaya, A., et al. (2015) Application of Electronic Tongue for Quantitative Analysis of Mineral Water and Wine. Electroanalysis, 11, 814-820.
https://doi.org/10.1002/(SICI)1521-4109(199907)11:10/11<814::AID-ELAN814>3.0.CO;2-7
[10]  Rudnitskaya, A., Nieuwoudt, H.H., Muller, N., et al. (2010) Instrumental Measurement of Bitter Taste in Red Wine Using an Electronic Tongue. Analytical & Bioanalytical Chemistry, 397, 3051-3060.
https://doi.org/10.1007/s00216-010-3885-3
[11]  Tian, S.Y., Deng, S.P., Ding, C.H., et al. (2007) Discrimination of Red Wine Age Using Voltammetric Electronic Tongue Based on Multifrequency Large-Amplitude Voltammetry and Pattern Recognition Method. Sensors and Materials, 19, 287-298.
[12]  Rudnitskaya, A., Rocha, S.M., Legin, A., Pereira, V. and Marques, J.C. (2010) Evaluation of the Feasibility of the Electronic Tongue as a Rapid Analytical Tool for Wine Age Prediction and Quantification of the Organic Acids and Phenolic Compounds. The Case-Study of Madeira Wine. Analytica Chimica Acta, 662, 82-89.
https://doi.org/10.1016/j.aca.2009.12.042
[13]  Winquist, F., Bjorklund, R., Krantz-Rülcker, C., Lundstrom, I., Stergren, K. and Skoglund, T. (2005) An Electronic Tongue in the Dairy Industry. Sensors and Actuators B: Chemical, 111, 299-304.
https://doi.org/10.1016/j.snb.2005.05.003
[14]  Zhang, W., Jia, H.F., Li, W., et al. (2012) Study on the Identification and Differentiation of Vinegar Quality by Electronic Tongue. Chinese Condiment, 37, 1-3.
[15]  Liu, M., Wang, M., Wang, J., et al. (2013) Comparison of Random Forest, Support Vector Machine and Back Propagation Neural Network for Electronic Tongue Data Classification: Application to the Recognition of Orange Beverage and Chinese Vinegar. Actuators B Chemical, 177, 970-980.
https://doi.org/10.1016/j.snb.2012.11.071
[16]  Diako, C., Vixie, K. and Ross, C.F. (2016) Electronic Tongue Analysis of Red Wines: Prediction and Correlation with Human Sensory Evaluation. NSBE, National Convention.
[17]  Du, H.F., Dong, A.J., Nie, Z.Q., et al. (2015) Solid-State Fermentation Process of Shanxi Old Vinegar and Prediction of Main Organic Acids by Electronic Tongue. Food and Fermentation Industry, 41, 196-201.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133