全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Asymptotic Behavior of Solutions for 3D Globally Modified Bénard Problem with Delay

DOI: 10.4236/oalib.1105163, PP. 1-15

Keywords: Bénard System, Delay, Galerkin Approximation, Asymptotic Behavior

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this paper, we mainly study the existence and uniqueness of solutions and the asymptotic behavior of solutions for three-dimensional globally modified Bénard systems with delays under local Lipschitz conditions.

References

[1]  Temam, R. (1988) Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Springer-Verlag, New York. https://doi.org/10.1007/978-1-4684-0313-8
[2]  Birnir, B. and Svanstedt, N. (2004) Existence Theory and Strong Attractors for the Rayleigh-Bénard Problem with a Large Aspect Ratio. Discrete & Continuous Dynamical Systems, 10, 53-74.
[3]  Caraballo, T., Márquez-Durán, A.M. and Real, J. (2010) Three-Dimensional System of Globally Modified Na-vier-Stokes Equations with Delay. International Journal of Bifurcation and Chaos in Applied Sciences, 20, 2869-2883.
https://doi.org/10.1142/S0218127410027428
[4]  Marn-Rubio, P., Márquez-Durán, A.M. and Real, J. (2013) Asymptotic Behavior of Solutions for a Three Dimensional System of Globally Modified Navier-Stokes Equations with a Locally Lipschitz Delay Term. Nonlinear Analysis, 79, 68-79.
https://doi.org/10.1016/j.na.2012.11.006
[5]  Romito, M. (2009) The Uniqueness of Weak Solutions of the Globally Modified Navier-Stokes Equations. Advanced Nonlinear Studies, 9, 425-429.
https://doi.org/10.1515/ans-2009-0209
[6]  Robinson, J.C. (2001) Infinite-Dimensional Dynamical Systems. Cambridge University Press, Cambridge. https://doi.org/10.1007/978-94-010-0732-0
[7]  Kapustyan, O.V., Melnik, V.S. and Valero, J. (2007) A Weak Attractor and Properties of Solutions for the Three-Dimensional Bénard Problem. Discrete & Continuous Dynamical Systems, 18, 449-481. https://doi.org/10.3934/dcds.2007.18.449
[8]  Temam, R. (1979) Na-vier-Stokes Equations. North-Holland, Amsterdam.
[9]  Lions, J.L. (1969) Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires. Dunod, Paris.
[10]  Evans, L.C. (2010) Partial Differential Equations. American Mathematical Society, 22, 261-271. https://doi.org/10.1090/gsm/019

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133