This
paper is to investigate the convergence rate of asymptotic normality of
frequency polygon estimation for density function under mixing random fields,
which include strongly mixing condition and some weaker mixing conditions. A
Berry-Esseen bound of frequency polygon is established and the convergence
rates of asymptotic normality are derived. In particularly, for the optimal bin
width, it is showed that the convergence rate of
asymptotic normality reaches to?when
mixing coefficient tends to zero exponentially fast.
References
[1]
Carbon, M., Francq, C. and Tran, L.T. (2010) Asymptotic Normality of Frequency Polygons for Random Fields. Journal of Statistical Planning and Inference, 140, 502-514. https://doi.org/10.1016/j.jspi.2009.07.028
[2]
Neaderhouser, C.C. (1980) Convergence of Block Spins Defined on Random Fields. Journal of Statistical Physics, 22, 673-684. https://doi.org/10.1007/BF01013936
[3]
Takahata, H. (1983) On the Rates in the Central Limit Theorem for Weakly Dependent Random Fields. Zeitschrift fur Wahrscheinlichkeitstheorie und verwandte Gebiete, 62, 477-480.
[4]
Tran, L.T. (1990) Kernel Density Estimation on Random Fields. Journal of Multivariate Analysis, 34, 37-53. https://doi.org/10.1016/0047-259X(90)90059-Q
[5]
Hallin, M., Lu, Z. and Tran, L.T. (2001) Density Estimation for Spatial Linear Processes. Bernoulli, 7, 657-668. https://doi.org/10.2307/3318731
[6]
Hallin, M., Lu, Z. and Tran, L.T. (2004) Kernel Density Estimation for Spatial Processes: The L1 Theory. Journal of Multivariate Analysis, 88, 61-75.
https://doi.org/10.1016/S0047-259X(03)00060-5
[7]
Cheng, T.L., Ho, H.C. and Lu, X. (2008) A Note on Asymptotic Normality of Kernel Estimation for Linear Random Fields on Z2. Journal of Theoretical Probability, 21, 267-286. https://doi.org/10.1007/s10959-008-0146-x
[8]
El Machkouri, M. (2011) Asymptotic Normality for the Parzen-Rosenblatt Density Estimator for Strongly Mixing Random Fields. Statistical Inference for Stochastic Processes, 14, 73-84. https://doi.org/10.1007/s11203-011-9052-4
[9]
El Machkouri, M. (2014) Kernel Density Estimation for Stationary Random Fields. ALEA—Latin American Journal of Probability and Mathematical Statistics, 11, 259-279.
[10]
Wang, Y. and Woodroofe, M. (2014) On the Asymptotic Normality of Kernel Density Estimators for Causal Linear Random Fields. Journal of Multivariate Analysis, 123, 201-213. https://doi.org/10.1016/j.jmva.2013.09.008
[11]
Biau, G. and Cadre, B. (2004) Nonparametric Spatial Prediction. Statistical Inference for Stochastic Processes, 7, 327-349.
https://doi.org/10.1023/B:SISP.0000049116.23705.88
[12]
Lu, Z. and Chen, X. (2004) Spatial Kernel Regression Estimation: Weak Concistency. Statistics & Probability Letters, 68, 125-136.
https://doi.org/10.1016/j.spl.2003.08.014
[13]
Hallin, M., Lu, Z. and Tran, L.T. (2004) Local Linear Spatial Regression. Annals of Statistics, 32, 2469-2500. https://doi.org/10.1214/009053604000000850
[14]
Gao, J., Lu, Z. and Tjostheim, D. (2006) Estimation in Semi-Parametric Spatial Regression. Annals of Statistics, 34, 1395-1435.
https://doi.org/10.1214/009053606000000317
[15]
Carbon, M., Francq, C. and Tran, L.T. (2007) Kernel Regression Estimation for Random Fields. Journal of Statistical Planning and Inference, 37, 778-798.
https://doi.org/10.1016/j.jspi.2006.06.008
[16]
Dabo-Niang, S. and Yao, A.F. (2007) Kernel Regression Estimation for Continuous Spatial Processes. Mathematical Methods of Statistics, 16, 298-317.
https://doi.org/10.3103/S1066530707040023
[17]
Scott, D.W. (1985) Frequency Polygons: Theory and Application. Journal of the American Statistical Association, 80, 348-354.
https://doi.org/10.1080/01621459.1985.10478121
[18]
Beirlant, J., Berlinet, A. and Gyorfi, L. (1999) On Piecewise Linear Density Estimators. Statistica Neerlandica, 53, 287-308. https://doi.org/10.1111/1467-9574.00113
[19]
Carbon, M., Garel, B. and Tran, L.T. (1997) Frequency Polygons for Weakly Dependent Processes. Statistics & Probability Letters, 33, 1-13.
https://doi.org/10.1016/S0167-7152(96)00104-6
[20]
Yang, X. (2015) Frequency Polygon Estimation of Density Function for Dependent Samples. Journal of the Korean Statistical Society, 44, 530-537.
https://doi.org/10.1016/j.jkss.2015.01.006
[21]
Xing, G.D., Yang, S.C. and Liang, X. (2015) On the Uniform Consistency of Frequency Polygons for ψ-Mixing Samples. Journal of the Korean Statistical Society, 44, 179-186. https://doi.org/10.1016/j.jkss.2014.07.001
[22]
Bensad, N. and Dabo-Niang, S. (2010) Frequency Polygons for Continuous Random Fields. Statistical Inference for Stochastic Processes, 13, 55-80.
https://doi.org/10.1007/s11203-009-9038-7
[23]
El Machkouri, M. (2013) On the Asymptotic Normality of Frequency Polygons for Strongly Mixing Spatial Processes. Statistical Inference for Stochastic Processes, 16, 193-206. https://doi.org/10.1007/s11203-013-9086-x
[24]
Carbon, M. (2006) Polygone des fréquences pour des champs aléatoires. Comptes Rendus Mathematique, 342, 693-696. https://doi.org/10.1016/j.crma.2006.02.019
[25]
Roussas, G.G. and Ioannides, D.A. (1987) Moment Inequalities for Mixing Sequences of Random Variables. Stochastic Analysis and Applications, 5, 61-120.
https://doi.org/10.1080/07362998708809108
[26]
Gao, J., Lu, Z. and Tjostheim, D. (2008) Moment Inequalities for Spatial Processes. Statistics and Probability Letters, 78, 687-697.
https://doi.org/10.1016/j.spl.2007.09.032
[27]
Yang, S.C. (2003) Uniformly Asymptotic Normality of the Regression Weighted Estimator for Negatively Associated Samples. Statistics and Probability Letters, 62, 101-110. https://doi.org/10.1016/S0167-7152(02)00427-3
[28]
Rio, E. (1995) The Functional Law of the Iterated Logarithm for Stationary Strongly Mixing Sequences. Annals of Probability, 23, 1188-1203.
https://doi.org/10.1214/aop/1176988179
[29]
Carbon, M., Tran, L.T. and Wu, B. (1997) Kernel Density Estimation for Random Fields (Density Estimation for Random Fields). Statistics & Probability Letters, 36, 115-125. https://doi.org/10.1016/S0167-7152(97)00054-0
[30]
Carbon, M., Hallin, M. and Tran, L.T. (1996) Kernel Density Estimation for Random Fields: The L1 Theory. Journal of Nonparametric Statistics, 6, 157-170.
https://doi.org/10.1080/10485259608832669