Sunn hemp (Crotalaria juncea L.) is a tropical legume that produces plant biomass and nitrogen (N) quickly. Our objectives were to assess the growth of a new sunn hemp cultivar breed to produce seed in a temperate climate and determine the residual N effect on a rye (Secale cereale L.) cover crop in east-central Alabama from 2007 to 2009. Plant populations, plant height, stem diameter, biomass production, and N content were determined for two sunn hemp planting dates, following corn (Zea mays L.) and wheat (Triticum aestivum L.) harvest, across different seeding rates (17, 34, 50, and 67?kg/ha). Rye biomass was measured the following spring. Sunn hemp biomass production was inconsistent across planting dates, but did relate to growing degree accumulation. Nitrogen concentrations were inversely related to biomass production, and subsequent N contents corresponded to biomass levels. Neither planting date nor seeding rate affected rye biomass production, but rye biomass averaged over both planting dates following wheat/sunn hemp averaged 43% and 33% greater than rye following fallow. Rye biomass following corn/sunn hemp was equivalent to fallow plots. Early planting dates are recommended for sunn hemp with seeding rates between 17 and 34?kg/ha to maximize biomass and N production. 1. Introduction Nitrogen (N) fertilizer costs are volatile and alternative N sources (such as legumes) are receiving renewed interest. In the southeastern United States, winter annual legumes are commonly incorporated into crop rotations and can contribute considerable biomass and N during the traditional winter fallow period. Legume biomass production is a major factor determining legume N contribution [1]. Nitrogen accumulation is highly variable and dependent upon environment, legume selection, planting date, termination, growth stage, and management strategy [1–3]. Throughout the Southeast, warm-season legumes, such as cowpea (Vigna unguiculata L.), sericea lespedeza (Lespedeza cuneata L.), and soybean (Glycine max L.) are currently available to producers for use as warm season cover crops, but they cannot produce substantial biomass or N in a short period of time. Sunn hemp, a nontraditional tropical legume, can also be used as a warm season cover crop across the Southeast. “Tropic Sun”, the most extensively studied cultivar, has been shown to produce 5.9?Mg/ha biomass and contribute 134–145?kg/ha N in a 9–12-week period [4]. This rapid biomass production enables sunn hemp to serve as a summer cover between warm-season harvest and cool-season planting that could also reduce
References
[1]
J. F. Holderbaum, A. M. Decker, J. J. Meisinger, F. R. Mulford, and L. R. Vough, “Fall-seeded legume cover crops for no-tillage corn in the humid East,” Agronomy Journal, vol. 82, no. 1, pp. 117–124, 1990.
[2]
K. S. Balkcom and D. W. Reeves, “Sunn-hemp utilized as a legume cover crop for corn production,” Agronomy Journal, vol. 97, no. 1, pp. 26–31, 2005.
[3]
C. M. Cherr, J. M. S. Scholberg, and R. McSorley, “Green manure approaches to crop production: a synthesis,” Agronomy Journal, vol. 98, no. 2, pp. 302–319, 2006.
[4]
Z. Mansoer, D. W. Reeves, and C. W. Wood, “Suitability of sunn hemp as an alternative late-summer legume cover crop,” Soil Science Society of America Journal, vol. 61, no. 1, pp. 246–253, 1997.
[5]
J. A. Mosjidis and G. Wehtje, “Weed control in sunn hemp and its ability to suppress weed growth,” Crop Protection, vol. 30, no. 1, pp. 70–73, 2011.
[6]
P. J. Bauer and D. W. Reeves, “A comparison of winter cereal species and planting dates as residue cover for cotton grown with conservation tillage,” Crop Science, vol. 39, no. 6, pp. 1824–1830, 1999.
[7]
K. Balkcom, H. Schomberg, W. Reeves et al., “Managing cover crops in conservation tillage systems,” in Managing Cover Crops Profitably, A. Clark, Ed., pp. 44–61, Sustainable Agriculture Network, Beltsville, Md, USA, 3rd edition, 2007.
[8]
K. S. Balkcom, C. W. Wood, J. F. Adams, and B. Meso, “Suitability of peanut residue as a nitrogen source for a rye cover crop,” Scientia Agricola, vol. 64, no. 2, pp. 181–186, 2007.
[9]
S. M. Dabney, J. A. Delgado, and D. W. Reeves, “Using winter cover crops to improve soil and water quality,” Communications in Soil Science and Plant Analysis, vol. 37, no. 7-8, pp. 1221–1250, 2001.
[10]
J. A. Mosjidis, “Breeding of annual and perennial legumes and their utilization as forage and crops,” Field and Vegetable Crops Research, vol. 44, no. 2, pp. 7–11, 2007.
[11]
J. F. Adams, C. C. Mitchell, and H. H. Bryant, Soil Test Fertilizer Recommendations for Alabama Crops, vol. 178 of Agronomy and Soils Department, Alabama Agricultural Experiment Station, Auburn, Ala, USA, 1994.
[12]
G. K. Sims, T. R. Ellsworth, and R. L. Mulvaney, “Microscale determination of inorganic nitrogen in water and soil extracts,” Communications in Soil Science and Plant Analysis, vol. 26, no. 1-2, pp. 303–316, 1995.
[13]
C. G. Cook, A. W. Scott, and P. Chow, “Planting date and cultivar effects on growth and stalk yield of sunn hemp,” Industrial Crops and Products, vol. 8, no. 2, pp. 89–95, 1998.
[14]
H. H. Schomberg, N. L. Martini, J. C. Diaz-Perez, S. C. Phatak, K. S. Balkcom, and H. L. Bhardwaj, “Potential for using sunn hemp as a source of biomass and nitrogen for the Piedmont and Coastal Plain regions of the Southeastern USA,” Agronomy Journal, vol. 99, no. 6, pp. 1448–1457, 2007.
[15]
J. D. Vaughan and G. K. Evanylo, “Soil nitrogen dynamics in winter cover crop-corn systems,” Communications in Soil Science and Plant Analysis, vol. 30, no. 1-2, pp. 31–52, 1999.
[16]
J. J. O. Odhiambo and A. A. Bomke, “Grass and legume cover crop effects on dry matter and nitrogen accumulation,” Agronomy Journal, vol. 93, no. 2, pp. 299–307, 2001.
[17]
M. L. Ruffo, D. G. Bullock, and G. A. Bollero, “Soybean yield as affected by biomass and nitrogen uptake of cereal rye in winter cover crop rotations,” Agronomy Journal, vol. 96, no. 3, pp. 800–805, 2004.
[18]
G. White and J. Haun, “Growing crotalaria juncea, a multi-purpose legume, for paper pulp,” Economic Botany, vol. 19, no. 2, pp. 175–183, 1965.
[19]
S. L. Tisdale, W. L. Nelson, J. D. Beaton, and J. L. Havlin, Soil Fertility and Fertilizers, Macmillan, New York, NY, USA, 5th edition, 1993.
[20]
A. J. Marshall, R. N. Gallaher, K. H. Wang, and R. McSorley, “Partitioning of dry matter and minerals in sunn hemp,” in Proceedings of the 25th Annual Southern Conservation Tillage Conference for Sustainable Agriculture, E. van Santen, Ed., pp. 310–313, Alabama Agricultural Experiment Station and Auburn University, Auburn, Ala, USA, June 2002.