全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Facile Synthesis of Porous SnSb Alloy Anode for Li-Ion Battery

DOI: 10.4236/msa.2019.101001, PP. 1-11

Keywords: Lithium-Ion Batteries, Porous Structure, SnSb Alloy Electrodes, Melt-Spinning, Dealloying

Full-Text   Cite this paper   Add to My Lib

Abstract:

Sn/Sb based alloy anodes have attracted considerable interest as electrodes for next-generation high performance Li-ion batteries (LIBs) owing to their high theoretical capacities. And fabricate porous structure is an effective way to improve materials’ cycling performance. Here, we developed nanoporous SnSb alloy ribbon (NP-SnSb) through a melt-spinning/chemical-etching process and took it as electrode of LIB directly. Being of self-supported and binder free, the NP-SnSb shows a total outperformance over its nonporous counterparts both in cycling performance and kinetic characteristic. Besides, considering the melt-spinning/chemical-etching synthetic process is high-through-put and simple, the ribbon kind of alloy anodes have strong potential application for LIBs research.

References

[1]  Zuo, X., Zhu, J., Müller-Buschbaum, P. and Cheng, Y.J. (2017) Silicon Based Lithium-Ion Battery Anodes: A Chronicle Perspective Review. Nano Energy, 31, 113-143.
https://doi.org/10.1016/j.nanoen.2016.11.013
[2]  Su, X., Wu, Q., Li, J., Xiao, X., Lott, A., Lu, W., Sheldon, B.W. and Wu, J. (2014) Silicon-Based Nanomaterials for Lithium-Ion Batteries: A Review. Advanced Energy Materials, 4, 1300882.
https://doi.org/10.1002/aenm.201300882
[3]  McDowell, M.T., Lee, S.W., Nix, W.D. and Cui, Y. (2013) Understanding the Lithiation of Silicon and Other Alloying Anodes for Lithium-Ion Batteries. Advanced Materials, 25, 4966-4985.
https://doi.org/10.1002/adma.201301795
[4]  Li, Z., Ding, J. and Mitlin, D. (2015) Tin and Tin Compounds for Sodium Ion Battery Anodes: Phase Transformations and Performance. Accounts of Chemical Research, 48, 1657-1665.
https://doi.org/10.1021/acs.accounts.5b00114
[5]  He, J., Wei, Y., Zhai, T. and Li, H. (2018) Antimony-Based Materials as Promising Anodes for Rechargeable Lithium-Ion and Sodiumion Batteries. Materials Chemistry Frontiers, 2, 437.
https://doi.org/10.1039/C7QM00480J
[6]  Luo, W., Gaumet, J.J. and Mai, L.Q. (2017) Antimony-Based Intermetallic Compounds for Lithium-Ion and Sodium-Ion Batteries: Synthesis, Construction and Application. Rare Metals, 36, 321-338.
https://doi.org/10.1007/s12598-017-0899-4
[7]  Shimoi, N., Komatsu, M., Tanaka, Y. and Tohji, K. (2018) Mechano-chemically Metamorphosed Composites of Homogeneous Nanoscale Silicon and Silicate Oxides with Lithium and Metal Compounds. Materials Sciences and Applications, 18, 111-125.
[8]  Balogun, M.S., Luo, Y., Qiu, W., Liu, P. and Tong, Y. (2016) A Review of Carbon Materials and Their Composites with Alloy Metals for Sodium Ion Battery Anodes. Carbon, 98, 162-178.
https://doi.org/10.1016/j.carbon.2015.09.091
[9]  Sengupta, S., Mitra, A., Dahiya, P.P., Kumar, A., Mallik, M., Das, K., Majumder, S.B. and Das, S. (2017) Investigation on Lithium Conversion Behavior and Degradation Mechanisms in Tin Based Ternary Component Alloy Anodes for Lithium Ion Batteries. Journal of Alloys and Compounds, 721, 236-248.
https://doi.org/10.1016/j.jallcom.2017.06.005
[10]  Tang, Y., Zhang, Y., Li, W., Ma, B. and Chen, X. (2015) Rational Material Design for Ultrafast Rechargeable Lithium-Ion Batteries. Chemical Society Reviews, 44, 5926-5940.
https://doi.org/10.1039/C4CS00442F
[11]  He, W.D., Ye, L.H., Wen, K.C., Liang, Y.C., Lv, W.Q., Zhu, G.L. and Zhang, K.H.L. (2016) Materials Research Advances towards High-Capacity Battery/Fuel Cell Devices. Journal of Electronic Science and Technology, 14, 12-20.
[12]  Yang, J., Wachtler, M., Winters, M. and Besenhard, J.O. (1999) Sub-Microcrystalline Sn and Sn-SnSb Powders as Lithium Storage Materials for Lithium-Ionb Atteries. Electrochemical and Solid-State Letters, 2, 161-163.
https://doi.org/10.1149/1.1390769
[13]  Wang, Z.J., Toyohiko, K. and Ma, C.L. (2013) Comparative TEM Investigation on the Precipitation Behaviors in Cu-15 wt% Sn Alloy. Rare Metals, 32, 139-143.
https://doi.org/10.1007/s12598-013-0033-1
[14]  Todd, A., Mar, R. and Dahn, J.R. (2007) Tin-Transition Metal-Carbon Systems for Lithium-Ion Battery Negative Electrodes. Journal of the Electrochemical Society, 154, A597-A604.
https://doi.org/10.1149/1.2724741
[15]  Ma, L., Yan, P., Wu, S., Zhu, G. and Shen, Y. (2017) Engineering Tin Phosphides@ Carbon Yolk-Shell Nanocube Structures as a Highly Stable Anode Material for Sodium-Ion Batteries. Journal of Materials Chemistry A, 5, 16994-17000.
https://doi.org/10.1039/C7TA04900E
[16]  Qin, J., Zhao, N., Shi, C., Liu, E., He, F., Ma, L., Li, Q., Li, J. and He, C. (2017) Sandwiched CSnO2C Hollow Nanostructures as an Ultralong-Lifespan High-Rate Anode Material for Lithium-Ion and Sodium-Ion Batteries. Journal of Materials Chemistry A, 5, 10946-10956.
https://doi.org/10.1039/C7TA01936J
[17]  Kim, J.H. and Kang, Y.C. (2017) Synthesis of Uniquely Structured Yolk-Shell Metal Oxide Microspheres Filled with Nitrogen-Doped Graphitic Carbon with Excellent Li-Ion Storage Performance. Small, 13, Article ID: 1701585.
https://doi.org/10.1002/smll.201701585
[18]  Mao, O., Turner, R.L., Courtney, I.A., Fredericksen, B.D., Buckett, M.I., Krause, L.J. and Dahn, J.R. (1999) Active/Inactive Nanocomposites as Anodes for Li-Ion Batteries. Electrochemical and Solid-State Letters, 2, 3-5.
https://doi.org/10.1149/1.1390715
[19]  Li, S., Niu, J., Zhao, Y.C., So, K.P., Wang, C., Wang, C.A. and Li, J. (2015) High-Rate Aluminium Yolk-Shell Nanoparticle Anode for Li-Ion Battery with Long Cycle Life and Ultrahigh Capacity. Nature Communications, 6, Article No. 7872.
https://doi.org/10.1038/ncomms8872
[20]  Li, S., Wang, Z., Liu, J., Yang, L., Guo, Y., Cheng, L., Lei, M. and Wang, W. (2016) Yolk-Shell SnC Eggette-Like Nanostructure: Application in Lithium-Ion and Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 8, 19438-19445.
https://doi.org/10.1021/acsami.6b04736
[21]  Xie, W., He, J., Kang, H.J., Tang, X., Zhu, S., Laver, M., Wang, S., Copley, J.R.D., Brown, C.M., Zhang, Q. and Tritt, T.M. (2010) Identifying the Specific Nanostructures Responsible for the High Thermoelectric Performance of (Bi,Sb)2Te3 Nanocomposites. Nano Letters, 10, 3283-3289.
https://doi.org/10.1021/nl100804a
[22]  Manaf, A., Buckley, R.A., Davies, H.A. and Leonowicz, M. (1991) Enhanced Magnetic Properties in Rapidly Solidified Nd-Fe-B Based Alloys. Journal of Magnetism and Magnetic Materials, 101, 360-362.
https://doi.org/10.1016/0304-8853(91)90779-A
[23]  Bruce, P.G., Scrosati, B. and Tarascon, J.M. (2008) Nanomaterials for Rechargeable Lithium Batteries. Angewandte Chemie International Edition, 47, 2930-2946.
https://doi.org/10.1002/anie.200702505
[24]  Schoonman, J. (2000) Nanostructured Materials in Solid State Ionics. Solid State Ionics, 135, 5-19.
https://doi.org/10.1016/S0167-2738(00)00324-6
[25]  Van der Ven, A., Marianetti, C., Morgan, D. and Ceder, G. (2000) Phase Transformations and Volume Changes in Spinel LixMn2O4. Solid State Ionics, 135, 21-23.
https://doi.org/10.1016/S0167-2738(00)00326-X
[26]  Yu, Y., Gu, L., Lang, X., Zhu, C., Fujita, T. and Chen, M. (2011) Li Storage in 3D Nanoporous Au-Supported Nanocrystalline Tin. Advanced Materials, 23, 2443- 2447.
https://doi.org/10.1002/adma.201004331
[27]  Etacheri, V., Seisenbaeva, G.A., Daniel, J., Nedelec, G.J.M., Kessler, V.G. and Pol, V.G. (2015) Ordered Network of Interconnected SnO2 Nanoparticles for Excellent Lithium-Ion Storage. Advanced Energy Materials, 5, 1614-6840.
https://doi.org/10.1002/aenm.201401289
[28]  Jiao, Y., Han, D., Ding, Y., Zhang, X., Guo, G., Hu, J., Yang, D. and Dong, A. (2015) Fabrication of Three-Dimensionally Interconnected Nanoparticle Superlattices and Their Lithium-Ion Storage Properties. Nature Communications, 6, Article No. 6420.
https://doi.org/10.1038/ncomms7420
[29]  Li, H., Wang, Q., Shi, L., Chen, L. and Huang, X. (2002) Nanosized SnSb Alloy Pinning on Hard Non-Graphitic Carbon Spherules as Anode Materials for a Li Ion Battery. Chemistry of Materials, 14, 103-108.
https://doi.org/10.1021/cm010195p
[30]  Park, M.S., Needham, S.A., Wang, G.X., Kang, Y.M., Park, J.S., Dou, S.X. and Liu, H.K. (2007) Nanostructured SnSb/Carbon Nanotube Composites Synthesized by Reductive Precipitation for Lithium-Ion Batteries. Chemistry of Materials, 19, 2406-2410.
https://doi.org/10.1021/cm0701761
[31]  Tirado, J.L., Jumas, J.C. and Olivier-Fourcade, J. (2002) X-Ray Diffraction, 7Li MAS NMR Spectroscopy, and 119Sn Mossbauer Spectroscopy Study of SnSb-Based Electrode Materials. Chemistry of Materials, 14, 2962-2968.
https://doi.org/10.1021/cm0112800
[32]  Augustyn, V., Come, J., Lowe, M.A., Kim, J.W., Taberna, P.L., Tolbert, S.H., Abrunna, H.D., Simon, P. and Dunn, B. (2013) High-Rate Electrochemical Energy Storage through Li+ Intercalation Pseudo-capacitance. Nature Materials, 12, 518-522.
[33]  Wang, J., Polleux, J., Lim, J. and Dunn, B. (2007) Pseudocapacitive Contributions to Electrochemical Energy Storage in TiO2 (Anatase) Nanoparticles. The Journal of Physical Chemistry C, 111, 14925-14931.
https://doi.org/10.1021/jp074464w

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133