Computational modeling continues to evolve in applications of hydrology and hydraulics, and the field of Computational Hydrology and Hydraulics has grown into a significant technology in both engineering and computational mathematics. In this paper, the fundamental issue of assessment of computational error is addressed by determination of an “equivalent” mathematical statement, as a partial differential equation (“PDE”) that describes the original mathematical PDE statement and computational solution of it. In other words, given that the computational model does not exactly solve the governing PDE and that the computational processes used to approximate the governing PDE further moves the computational outcome away from the exact solution, what “alternate” or “equivalent” PDE does the resulting computational model exactly solve? In this paper it is shown that development of such an equivalent PDE enables an assessment of computational error by direct comparison of the equivalent PDE to the original PDE targeted to being solved. As an example, the USGS Diffusion Hydrodynamic Model (“DHM”) is examined as to development of an equivalent PDE that describes the DHM computational modeling outcome, which is then compared to the actual outcomes resulting from application of the DHM model.
References
[1]
Hromadka, T.V. and Yen, C.-C. (1987) A Diffusion Hydrodynamic Model, U.S. Geological Survey. Water-Resources Investigations Report, USGS Publications Warehouse, 87-4137. http://pubs.er.usgs.gov/publication/wri874137
[2]
Rao, P., Hromadka II, T.V., Huxley, C., Souders, D., Jordan, N., Yen, C.C., Bristow, E., Biering, C., Horton, S. and Espinosa, B. (2017) Assessment of Computer Modeling Accuracy in Floodplain Hydraulics. International Journal of Modelling and Simulation, 37, 88-95. https://doi.org/10.1080/02286203.2016.1261218
[3]
Hromadka II, T.V., Berenbrokc, C.E., Freckleton, J.R. and Guymon, G.L. (1985) A Two-Dimensional Diffusion Dam-Break Model. Advances in Water Resources, 8, 7-14. https://doi.org/10.1016/0309-1708(85)90074-0
[4]
Hromadka, T., Walker, T., Yen, C. and DeVries, J. (1989) Application of the USGS Diffusion Hydrodynamic Model for Urban Floodplain Analysis. JAWRA Journal of the American Water Resources Association, 25, 1063-1071. https://doi.org/10.1111/j.1752-1688.1989.tb05422.x
[5]
Hromadka, T.V. and Yen, C.C. (1993) A Diffusion Hydrodynamic Model (DHM). Advances in Water Resources, 9, 118-170. https://doi.org/10.1016/0309-1708(86)90031-X
[6]
Hromadka, T.V., Yen, C.C. and Bajak, P.A. (1992) Application of the USGS Diffusion Hydrodynamic Model (DHM) in Evaluation of Estuary Flow Circulation. Advances in Engineering Software, 14, 291-301. https://doi.org/10.1016/0965-9978(92)90006-2
[7]
Hromadka II, T.V., Walker, T.R. and Yen, C.C. (1988) Using the Diffusion Hydrodynamic Model (DHM) to Evaluate Flood Plain Environmental Impacts. Environmental Software, 3, 4-11. https://doi.org/10.1016/0266-9838(88)90003-2
[8]
O’Brien, J.S., Julien, P.Y. and Fullerton, W.T. (1993) Two-Dimensional Water Flood and Mudflow Simulation. Journal of Hydraulic Engineering, ASCE, 119, 244-261. https://doi.org/10.1061/(ASCE)0733-9429(1993)119:2(244)
[9]
Singh, V.P. (1996) Kinematic Wave Modeling in Water Resources: Surface-Water Hydrology. Wiley, New York.
[10]
Neil, H.M., Bates, P.D., Horritt, M.S. and Wilson, M.D. (2007) Simple Spatially-Distributed Models for Predicting Flood Inundation: A Review. Geomorphology, 90, 208-225. https://doi.org/10.1016/j.geomorph.2006.10.021
[11]
Akan, A.O. and Yen, B.C. (1981) Diffusion Wave Flood Routing in Channel Networks. Journal of Hydraulic Division, ASCE, 107, 719-732.