This paper mainly talks about a popular approach of volatility of a
GARCH-type model in R, while the disturbances are independent and have
identical Student-t distribution. It uses the Metropolis-Hastings method to
perform the computations and gives the programs in details in R.
References
[1]
Bollerslev, T. (1986) Generalized Autoregressive Conditional Heteroscedasticity. Journal of Econometrics, 31, 307-327.
https://doi.org/10.1016/0304-4076(86)90063-1
[2]
Davidson, J. (2012) Moment and Memory Properties of Linear Conditional Heteroscedasticity Models, and a New Model. Journal of Business & Economic Statistics, 22, 16-29. https://doi.org/10.1198/073500103288619359
[3]
Rombouts, J., Stentoft, L. and Violante, F. (2014) The Value of Multivariate Model Sophistication: An Application to Pricing Dow Jones Industrial Average Options. International Journal of Forecasting, 30, 78-98.
https://doi.org/10.1016/j.ijforecast.2013.07.006
[4]
Engle, R.F. (1982) Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of U.K. Inflation. Econometrica, 50, 987-1007.
https://doi.org/10.2307/1912773
[5]
Weiss, A.A. (1986) Asymptotic Theory for ARCH Models: Estimation and Testing. Econometric Theory, 2, 107-131. https://doi.org/10.1017/S0266466600011397
[6]
Francq, C. and Zakoian, J.M. (1998) Estimating Linear Representations of Nonlinear Processes. Journal of Statistical Planning & Inference, 68, 145-165.
https://doi.org/10.1016/S0378-3758(97)00139-0
[7]
Francq, C. and Zakoian, J.M. (2000) Covariance Matrix Estimation for Estimators of Mixing Weak ARMA Models. Comptes Rendus de I Académie des Sciences-Series I—Mathematics, 83, 369-394. https://doi.org/10.1016/S0378-3758(99)00109-3
[8]
Ling, S. (2007) A Double AR(p) Model: Structure and Estimation. Statistica Sinica, 17, 161-175.
[9]
Jacquier, E., Polson, N.G. and Rossi, P. (2004) Bayesian Analysis of Stochastic Volatility Models with Fat-Tails and Correlated Errors. Journal of Econometrics, 122, 185-212. https://doi.org/10.1016/j.jeconom.2003.09.001
[10]
Ardia, D. (2007) bayesGARCH: Bayesian Estimation of the GARCH(1,1) Model with Student-t Innovations in R.
http://CRAN.R-project.org/package=bayesGARCH
[11]
Nakatsuma, T. (1998) A Markov-Chain Sampling Algorithm for GARCH Models. Studies in Nonlinear Dynamics & Econometrics, 3, 107-117.
https://doi.org/10.2202/1558-3708.1043
[12]
Chin, S. and Greenberg, E. (1995) Markov Chain Monte Carlo Simulation Methods in Econometrics. Econometrics, 12, 409-431.
[13]
Virbickaite, A., Ausín, M.C. and Galeano, P. (2015) A Bayesian Non-Parametric Approach to Asymmetric Dynamic Conditional Correlation Model with Application to Portfolio Selection. Computational Statistics and Data Analysis, 100, 814-829. https://doi.org/10.1016/j.csda.2014.12.005
[14]
Jensen, M.J. and Maheub, J.M. (2013) Bayesian Semiparametric Multivariate GARCH Modeling. Journal of Econometrics, 176, 3-17.
https://doi.org/10.1016/j.jeconom.2013.03.009
[15]
Geweke, J. (1993) Bayesian Treatment of the Independent Student-t Linear Model. Journal of Applied Econometrics, 8, S19-S40.
https://doi.org/10.1002/jae.3950080504