全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Ecosystem Services in Differently Used Agroecosystems along a Climatic Gradient in Slovakia

DOI: 10.4236/oje.2018.812037, PP. 623-645

Keywords: Agroecosystem Services, Climatic Zone, Mapping, Trade-Offs, Synergies

Full-Text   Cite this paper   Add to My Lib

Abstract:

For analysis and evaluation of potential of agroecosystem (arable land and grassland) services (provisioning, regulating and cultural) in Slovakia we have created a mapping unit combining these input layers: slope topography, soil texture and landuse in four climatic regions. Evaluated potential of agroecosystem services was categorised into five categories (very low, low, medium, high and very high). Our results show that climate has the most significant impact on agroecosystem services. Warm, dry lowland region has a higher potential of provisioning services, regulation of water regime, filtration of pollutants and control of soil erosion in comparison to moderately warm and cold regions. In moderate cold region, more than 90% of the total area of arable land has low potential of water regime regulation and cleaning potential (immobilization of risk elements). In the moderate warm climatic region, there is a high share of categories of low and moderate potential of provisioning services and low and moderate potential of water regime regulation. Majority of the total area of warm climatic region belongs to the categories of moderate to high potential of provisioning services and high potential of regulation of water regime. In this climatic zone low potential categories of risk elements immobilization are present in more than 65% of the arable land total area. On the other hand, in very warm climatic zone, more than 89% of the total area of arable land belongs to the category with a very high cleaning (buffering) potential. Potential of natural conditions for recreation is higher only in moderate cold and moderate warm climatic zones with a higher proportion of area of grassland agroecosystems and protected areas NATURA 2000. Moreover, the methodology developed in this paper is replicable and could be applied by planners in the case that they are proficient in geographical information systems.

References

[1]  Nieto-Romero, M., Oteros-Rozas, E., Gonzáles, J.A. and Martin-López, B. (2013) Exploring the Knowledge Landscape of Ecosystem Services Assessments in Mediterranean Agroecosystems: Insights for Future Research. Environmental Science & Policy, 37, 21-133.
[2]  Burkhard, B., Kandziorai, M.S. and Müller, F. (2014) Ecosystem Service Potentials, Flows and Demands—Concepts for Spatial Localisation, Indication and Quantification. Official Journal of the International Association for Landscape Ecology (IALE-D), 34, 1-32.
http://www.landscapeonline.de/103097lo201434
https://doi.org/10.3097/LO.201434
[3]  Frélichová, J., Vackár, D., Pártl, A., Loucková, B., Harmácková, Z. and Lorencová, E. (2014) Integrated Assessment of Ecosystem Services in the Czech Republic. Ecosystem Services, 8, 110-117.
https://doi.org/10.1016/j.ecoser.2014.03.001
[4]  Birghofer, K., Diehl, E., Andersson, J., Ekroos, J., Früh-Müller, A., Machnikowski, F., Mader, V.L., Nilsson, L., Sasaki, K., Rundlof, M., Wolters, V. and Smith, H.G. (2015) Ecosystem Services—Current Challenges and Opportunities for Ecological Research. Frontiers in Ecology and Evolution, 2.
[5]  Dominati, E., Patterson, M. and Mackay, A. (2010) A Framework for Classifying and Quantifying the Natural Capital and Ecosystem Services of Soils. Ecological Economics, 69, 1858-1868.
https://doi.org/10.1016/j.ecolecon.2010.05.002
[6]  Costanza, R. and Daly, H.E. (1992) Natural Capital and Sustainable Development. Conservation Biology, 6, 37-463.
https://doi.org/10.1046/j.1523-1739.1992.610037.x
[7]  Dominati, E.J. (2013) Natural Capital and Ecosystem Services of Soils. In: Dymond, J.R., Ed., Ecosystem Services in New Zealand—Conditions and Trends, Manaaki Whenua Press, Lincoln.
[8]  Makovníková, J., Pálka, B., Siráň, M., Kanianska, R., Kizeková, M. and Jadudová, J. (2017) Modeling and Evaluation Agroecosystem Services. (Modelovanie a Hodnotenie Agroekosystémovych Sluzieb). Belianum Vydavatelstvo Univerzity Mateja Bela, Banskej Bystrici.
[9]  (2005) Ecosystems and Human Well-Being: Our Human Planet: Summary for Decision Makers. The Millennium Ecosystem Assessment Series, MEA (Millennium Ecosystem Assessment), Vol. 5, Island Press, Washington DC.
[10]  Burkhard, B., Kroll, F., Nedkov, S. and Müller, F. (2012) Mapping Supply, Demand and Budgets of Ecosystem Services. Ecological Indicators, 21, 17-29.
https://doi.org/10.1016/j.ecolind.2011.06.019
[11]  Daniel, T.C., Muhar, A., Arnberger, A., Aznar, O. and von der Dunk, A. (2012) Contributions of Cultural Services to the Ecosystem Services Agenda. PNAS, 109, 8812-8819.
https://doi.org/10.1073/pnas.1114773109
[12]  Forouzangohar, M., Crossman, N.D., Richard, J., MacEwan, R.J., DugalWallace, O. and Bennett, L.T. (2014) Ecosystem Services in Agricultural Landscapes: A Spatially Explicit Approach to Support Sustainable Soil Management. Scientific World Journal, 2014, Article ID: 483298.
[13]  Dominati, E.J., Mackay, A., Lynch, B., Heath, N. and Millner, I. (2014) An Ecosystem Services Approach to the Quantification of Shallow Mass Movement Erosion and the Value of Soil Conservation Practices. Ecosystem Services, 9, 204-215.
https://doi.org/10.1016/j.ecoser.2014.06.006
[14]  Yaalon, D.H. and Arnold, R.W. (2000). Attitudes toward Soils and Their Societal rElevance: Then and Now. Soil Science, 65, 5-12.
https://doi.org/10.1097/00010694-200001000-00003
[15]  Vilcek, J. and Koco, S. (2018) Integrated Index of Agricultural Soil Quality in Slovakia. Journal of Maps, 14, 68-76.
https://doi.org/10.1080/17445647.2018.1428233
[16]  Coyle, C., Creamer, R.E., Schulte, R.P.O., O’Sullivan, L. and Jordan, P. (2016) A Functional Land Management Conceptual Framework under Soil Drainage and Land Use Scenarios. Environmental Science & Policy, 56, 39-48.
[17]  Haines-Young, R., Potschin, M. and Kienast, F. (2012) Indicators of Ecosystem Service Potential at European Scales: Mapping Marginal Changes and Trade-Offs. Ecological Indicartos, 21, 39-53.
https://doi.org/10.1016/j.ecolind.2011.09.004
[18]  Greiner, L., Keller, A., Gret-Regamey, A. and Papritz, A. (2017) Soil Function Assessment: Review of Methods for Quantifying the Contributions of Soils to Ecosystem Services. Land Use Policy, 69, 224-237.
https://doi.org/10.1016/j.landusepol.2017.06.025
[19]  Juráni, B. (2005) Protection, Land Use and Human Impact (Ochrana, vyuzívanie pody a vplyv cloveka). In: Sobocká, J., Ed., Proseedings of Soil Science Conference, Societas Pedologica Slovaca and Soil Science and Conservation Research Institute, Bratislava, 178-180. (In Slovak)
[20]  Bujnovsky, R., Vilcek, J., Blaas, G., Skalsky, R., Barancíková, G., Makovníková, J., Balkovic, J. and Pálka, B. (2011) Assessment of Capacities of Soil and Effects from Its Use (Hodnotenie kapacít pody a efektov z jej vyuzívania). Soil Science and Conservation Research Institute, Bratislava, 70 p. (In Slovak)
[21]  Makovníková, J., Barancíková, G. and Pálka, B. (2007) Approach to the Assessment of Transport Risk of Inorganic Pollutants Based on the Immobilisation Capability of Soil. Plant, Soil and Environment, 53, 365-373.
https://doi.org/10.17221/2215-PSE
[22]  Barancíková, G., Koco,S, Makovníková, J. and Torma, S. (2010) Filter and Transport Functions of Soil. Soil Science and Conservation Research Institute, Bratislava, 33 p. (In Slovak)
[23]  MEA (Millennium Ecosystem Assessment) (2007) A Toolkit for Understanding and Action. Protecting Natures Services. Protecting Ourselves. Island Press, Washington DC, 28 s.
[24]  TEEB (2010) The Ecnomics of Ecosystems and Biodiversity: Ecological and Economic Foundationd. Earthscan, London and Washington DC.
[25]  Burkhard, B., Crossman, N., Nedkov, S., Petz, K. and Alkemade, R. (2013) Mapping and Modelling Ecosystem Services for Science, Policy and Practice. Ecosystem Services, 4, 1-3.
https://doi.org/10.1016/j.ecoser.2013.04.005
[26]  Costanza, R. (2017) Twenty Years of Ecosystem Services: How Far Have We Come and How Far Do We Still Need to Go? Ecosystem Services, 28, 1-16.
https://doi.org/10.1016/j.ecoser.2017.09.008
[27]  Burkhard, B. and Maes, J. (2017) Mapping Ecosystem Services. Advanced Books.
[28]  Scolozzi, R., Morri, E. and Santolini, R. (2012) Delphi-Based Change Assessment in Ecosystem Service Values to Support Strategic Spatial Planning in Italian Landscapes. Ecological Indicators, 21, 134-144.
https://doi.org/10.1016/j.ecolind.2011.07.019
[29]  Makovníková, J., Kobza, J., Pálka, B., Malis, J., Kanianska, R. and Kizeková, M. (2016) An Approach to Mapping the Potential of Cultural Agroecosystem Services. Soil and Water Research, 11, 44-52.
https://doi.org/10.17221/109/2015-SWR
[30]  Crossman, N.D., Burkhard, B., Nedkov, S., Willemen, L., Petz, K., Palomo, I., Drakou, E.G., Martín-Lopez, B., McPhearson, T., Boyanova, K., Alkemade, R., Egoh, B., Dunbar, M. and Maes, J. (2013) A Blueprint for Mapping and Modelling Ecosystem Services. Ecosystem Services, 4, 4-14.
https://doi.org/10.1016/j.ecoser.2013.02.001
[31]  Naidoo, R., Balmford, A., Costanza, R., Fisher, B., Green, R.E., Lehner, B., Malcolm, T.H. and Ricketts, T.H. (2008) Global Mapping of Ecosystem Services and Conservation Priorities. Proceedings of the National Academy of Sciences of the USA, 105, 9495-9500.
https://doi.org/10.1073/pnas.0707823105
[32]  Schulp, C.J.E., Lautenbach, S. and Verburg, P.H. (2014) Quantifying and Mapping Ecosystem Services: Demand and Supply of Pollination in the European Union. Ecological Indicators, 36, 131-141.
https://doi.org/10.1016/j.ecolind.2013.07.014
[33]  Bateman, I.J., Mace, G.M., Fezzi, C., Atkinson, G. and Turner, K. (2011) Economic Analysis for Ecosystem Service Assessments. Environmental and Resource Economics, 48, 177-218.
https://doi.org/10.1007/s10640-010-9418-x
[34]  Honigová, I., Vackár, D., Lorencová, E., Melichar, J., Gotzl, M., Sonderegger, G., Ousková, V., Hosek, M. and Chobot, K. (2012) Survey on Grassland Ecosystem Services, Report to the European Topic Centre on Biological Diversity. Nature Conservation Agency of the Czech Republic, Prague, 78.
[35]  Frélichová, J. and Fanta, J. (2015) Ecosystem Service Availability in View of Long-Term Land-Use Changes: A Regional Case Study in the Czech Republic. Ecosystem Health and Sustainabilty, 1, 1-15.
https://doi.org/10.1890/EHS15-0024.1
[36]  Olosutean, H. (2017) Methods for Modeling Ecosystem Services: A Review. Management of Sustainable Development, 7, 5-12.
[37]  Maes, J., Braat, L., Jax, K., Hutchins, M., et al. (2011) A Spatial Assessment of Ecosystem Services in Europe: Methods, Case Studies and Policy Analysis—Phase 1. PEER Report No. 3, Partnership for European Environmental Research, Ispra.
[38]  Hamnett, R.G. (2006) Country Pasture/Forage Resources Profile-Slovakia.
http://www.fao.org/ag/agp/agpc/doc/Counprof/slovak/slovakia.htm
[39]  NAFC-SSCRI (2015) Distribution of Agricultural Land in Agro-Climatic Regions of Slovakia.
http://www.podnemapy.sk/portal/reg_pod_infoservis/klima/klima.aspx
[40]  Dzatko, M., Masát, K. and Cambel, B. (1989) Agroclimatic Regions SR-VCPú-úPVR, Bratislava.
[41]  Curlík, J. (2011) Potential Toxic Trace Elements and Their Distribution in the Soils of Slovakia. Faculty of Natural Sciences, Comenius University, Bratislava. (In Slovak)
[42]  Kobza, J., Barancíková, G., Dodok, R., Hrivňáková, K., Makovníková, J., Pálka, B., Pavlenda, P., Schlosserová, J., Styk, J. and Siráň, M. (2014) Soil Monitoring of the Slovak Republic (Monitoring pod SR). National Agriculture and Food Centre-Soil Science and Conservation Research Institute, Bratislava, 252. (In Slovak)
[43]  Van Camp, B., Bujarrabal, A.R., Gentile, R.J.A., Jones, L., Montanarella, L., Olazabal, O. and Selvaradjou, S.K. (2004) Reports of the Technical Working Groups Established under the Thematic Strategy for Soil Protection. EUR 21319 EN/5, 872. Office for Official Publications of the European Communities, Luxembourg.
[44]  Alam, M., Dupra, J. and Messier, C.H. (2016) A Framework towards a Composite Indicator for Urban Ecosystem Services. Ecological Indicators, 60, 38-44.
https://doi.org/10.1016/j.ecolind.2015.05.035
[45]  Seják, J., Dejmal, I., Petrícek, V., Cudlín, P., Míchal, I., Cerny, K., Kucera, T., et al. (2003) Assessment and Valuation of Biotopes of the Czech Republic. Praha, 428. (In Czech)
[46]  Dzatko, M. (2002) Evaluation of Production Potential of Agricultural Land and Soil-Ecological Regions of Slovakia. Soil Science and Conservation Research Institute, Bratislava, 87. (In Slovak)
[47]  Bujnovsky, R., Balkovic, J., Barancíková, G., Makovníková, J. and Vilcek, J. (2009) Assessment and Valuation of Ecological Functions of Agricultural Land in Slovakia. Soil Science and Conservation Research Institute, Bratislava, 72. (In Slovak)
[48]  Wischmeier, W.H. and Smith, D.D. (1978) Predicting Rainfall Erosion Losses: Guide to Conservation Planning. Agricultural Handbook No. 537, USDA, 58 p.
[49]  Majtaníková, J. (2011) Vyhodnotenie eróznej ohrozenosti vybraného podneho celku na území povodia Hostovského potoka. In: Krajinné inzinierstvo-súcasny stav a vyhlad do budúcnosti, Slovenská polnohospodárska univerzita, Nitra.
http://www.slpk.sk/eldo/2011/zborniky/07-11/majtanikova.pdf
[50]  Barancíková, G., Gutteková, M., Halas, J., Koco, S., Makovníková, J., Nováková, M., Skalsky, R., Tarasovicová, Z. and Vilcek, J. (2011) Soil Organic Carbon in the Agricultural Landscape-Modeling of Changes in Space and Time. Soil Science and Conservation Research Institute, Bratislava, 85 p. (In Slovak)
[51]  Sherrouse, B.C., Clement, J.M. and Semmens, D.J. (2011) A GIS Application for Assessing, Mapping, and Quantifying the Social Values of Ecosystem Services. Applied Geography, 31, 748-760.
https://doi.org/10.1016/j.apgeog.2010.08.002
[52]  Krkoska Lorencová, E., Harmácková, Z.V., Landová, L., Pártl, A. and Vackár, D. (2016) Assessing Impact of Land Use and Climate Change on Regulating Ecosystem Services in the Czech Republic. Ecosystem Health and Sustainability, 2, e01210.
https://doi.org/10.1002/ehs2.1210
[53]  Kanianska, R., Jadudová, J., Makovníková, J. and Kizeková, M. (2016) Assessment of Relationships between Earthworms and Soil Abiotic and Biotic Factors as a Tool in Sustainable Agricultural. Sustainability, 8, 906.
[54]  EEA (2013) Technical Report No. 11/2013. The European Grassland Butterfly Indicator: 1990-2011. Publications Office of the European Union, Luxembourg, 36 p.
[55]  Montoya, J.M. and Raffaelli, D. (2010) Climate Change, Biotic Interactions and Ecosystem Services. Philosophical Transactions of the Royal Society B, 365, 2013-2018.
https://doi.org/10.1098/rstb.2010.0114
[56]  Birkhofer, K. and Wolters, V. (2012) The Global Relationship between Climate, Net Primary Production and the Diet of Spiders. Global Ecology and Biogeography, 21, 100-108.
https://doi.org/10.1111/j.1466-8238.2011.00654.x
[57]  Diehl, E., Sereda, E., Wolters, V. and Birkhofer, K. (2013) Effects of Predator Specialization, Host Plant and Climate on Biological Control of Aphids by Natural Enemies: A Meta-Analysis. Journal of Applied Ecology, 50, 262-270.
https://doi.org/10.1111/1365-2664.12032
[58]  Spake, R., et al. (2017) Unpacking Ecosystem Service Bundles: Towards Predictive Mapping of Synergies and Trade-Offs between Ecosystem Services. Global Environmental Change, 47, 37-50.
https://doi.org/10.1016/j.gloenvcha.2017.08.004
[59]  Kvitkovic, J. (1964) Concerning the Basic Geomorphological Problems of the East-Slovakian Lowland. Geograficky Casopis, 20, 143-159. (In Slovak)
[60]  Yong, R.N., Mohamed, A.M.O. and Warkentin, B.P. (1992) Principles of Contaminant Transport in Soils. Elsevier, London.
[61]  Barancíková, G. and Makovníková, J. (2003) The Influence of Soil Humic Acid Quality on Sorption and Mobility of Heavy Metals. Plant, Soil and Environment, 49, 565-571.
https://doi.org/10.17221/4195-PSE
[62]  Makovníková, J. and Barancíková, G. (2009) Assessment of Transport Risk of Cadmium and Lead on the Basis of Immobilisation Capability of Soil. Soil and Water Research, 1, 10-16.
[63]  Burkhard, B., Kroll, F., Müller, F. and Windhorst, W. (2009) Landscapes’ Capacities to Provide Ecosystem Services—A Concept for Land-Cover Based Assessments. Landscape Online, 15, 1-22.
[64]  Siráň, M., Makovníková, J. and Barancíková, G. (2013) Monitoring of Soil Bulk Demsity-Basis for Determination of Organic Matter Stock in Soil. Proseedings of Soil Science and Conservation Research Institute, Bratislava, 166-173. (In Slovak)
[65]  Campbell, C.A. and Souster, W. (1982) Loss of Organic Matter and Potentially Mineralizable Nitrogen from Saskatchewan Soils Due to Cropping. Canadian Journal of Soil Science, 62, 651-656.
https://doi.org/10.4141/cjss82-071
[66]  Schnitzer, M., Mcarthur, D.F.E., Schulten, H.R., Kozak, L.M. and Huang, P.M. (2006) Long-Term Cultivation Effects on the Quality and Quantity of Organic Mater in Selected Canadian Prairie Soils. Geoderma, 130, 141-156.
https://doi.org/10.1016/j.geoderma.2005.01.021
[67]  Bielek, P., Surina, B., Ilavská, B. and Vilcek, J. (1998) Our Soils (Agricultural) (Nase pody (polnohospodárske)). Soil Science and Conservation Research Institute, Bratislava, 80. (In Slovak)
[68]  Conant, R.T., Ryan, M.G., Agren, G.I., Birge, H.E., Davidson, E.A., Eliasson, P.E., Evans, S.E., Frey, S.D., Giardina, C.P., Hopkins, F.M., Hyvonen, R., Kirschbaum, M.U.F., Lavallee, J.M., Leifeld, J., Parton, W.J., Steinweg, J.M., Wallenstein, M.D., Wetterstedt, J.A.M. and Bradford, M.A. (2011) Temperature and Soil Organic Matter Decomposition Rates-Synthesis of Current Knowledge and a Way Forward. Global Change Biology, 17, 3392-3404.
https://doi.org/10.1111/j.1365-2486.2011.02496.x
[69]  Martens, S.N., Breshears, D.D. and Meyer, C.W. (2000) Spatial Distributions of Understory Light along the Grassland/Forest Continuum: Effects of Cover, Height, and Spatial Pattern of Tree Canopies. Ecological Modeling, 126, 79-93.
https://doi.org/10.1016/S0304-3800(99)00188-X
[70]  Felipe-Lucia, M.R., Comin, F.A. and Bennett, E.M. (2014) Interactions among Ecosystem Services across Land Uses in a Floodplain Agroecosystem. Ecology and Society, 19, Art. 20.
https://doi.org/10.5751/ES-06249-190120
[71]  Mahbubul, A., Duprasb, J. and Messier, C.H. (2016) A Framework towards a Composite Indicator for Urban Ecosystem Services. Ecological Indicators, 60, 38-44.
https://doi.org/10.1016/j.ecolind.2015.05.035
[72]  Mouchet, M.A., Paracchini, M.L., Schulp, C.J.E., Stürck, J., Verkerk, P.J., Verburg, P.H. and Lavorel, S. (2017) Bundles of Ecosystem (Dis-)Services and Multifunctionality across European Landscapes. Ecological Indicators, 7, 23-28.
https://doi.org/10.1016/j.ecolind.2016.09.026
[73]  Lescourret, F., Magda, D., Richard, G., Blondon, A.F.A., Bardy, M., Baudry, J., Doussan, I., Dumont, B., Lefèvre, F., Litrico, I., Clouaire, R.M., Montuelle, B., Pellerin, S., Plantegenest, M., Tancoigne, E., Thomas, A., Guyomard, H. and Soussana, L.F. (2015) A Social-Ecological Approach to Managing Multiple Agro-Ecosystem Services. Environmental Sustainability, 14, 68-75.
[74]  Tomscha, S.A. and Gergel, S.E. (2016) Ecosystem Service Trade-Offs and Synergies Misunderstood 838 without Landscape History. Ecology and Society, 21, 43.
https://doi.org/10.5751/ES-08345-210143

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133