全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Infinite Parametric Families of Irreducible Polynomials with a Prescribed Number of Complex Roots

DOI: 10.4236/ojdm.2019.91001, PP. 1-6

Keywords: Írreducible Polynomial, Complex Roots, Real Roots, Galois Theory

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this note, for any pair of natural numbers (n,k), n≥3, k≥1, and 2k, we construct an infinite family of irreducible polynomials of degree n, with integer coefficients, that has exactly n-2k?complex non-real roots if n is even and has exactly n-2k-1?complex non-real roots if n is odd. Our work generalizes a technical result of R. Bauer, presented in the classical monograph “Basic Algebra” of N. Jacobson. It is used there to construct polynomials with Galois groups, the symmetric group. Bauer’s result covers the case k=1?and n odd prime.

References

[1]  Jacobson, N. (1964) Lectures in Abstract Algebra, III. Theory of Fields and Galois Theory. Springer-Verlag, Berlin.
https://doi.org/10.1007/978-1-4612-9872-4

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133