全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Linear Regression Analysis for Symbolic Interval Data

DOI: 10.4236/ojs.2018.86059, PP. 885-901

Keywords: Linear Regression, Symbolic Interval Data, Centre Method, Least Squares Estimate

Full-Text   Cite this paper   Add to My Lib

Abstract:

In the network technology era, the collected data are growing more and more complex, and become larger than before. In this article, we focus on estimates of the linear regression parameters for symbolic interval data. We propose two approaches to estimate regression parameters for symbolic interval data under two different data models and compare our proposed approaches with the existing methods via simulations. Finally, we analyze two real datasets with the proposed methods for illustrations.

References

[1]  Diday, E. (1987) Introduction à l’ Approache Symbolique en Analyse des Données. Premières Journées Symbolique-Numérique. CEREMADE, Université Paris, 21-56.
[2]  Billard, L. and Diday, E. (2000) Regression Analysis for Interval-Valued Data. In: Bock, H.-H. and Diday, E., Eds., Data Analysis, Classification and Related Methods, Springer-Verlag, Berlin, 369-374.
https://doi.org/10.1007/978-3-642-59789-3_58
[3]  Carvalho, F.A.T., Neto, L. and Tenorio, C.P. (2004) A New Method to Fit a Linear Regression Model for Interval-Valued Data. Annual Conference on Artificial Intelligence: KI2004 Advances in Artical Inteligence, Ulm, 20-24 September 2004, 295-306.
https://doi.org/10.1007/978-3-540-30221-6_23
[4]  Xu, W. (2010) Symbolic Data Analysis: Interval-Valued Data Regression. Ph.D. Thesis, The University of Georgia, Athens.
[5]  Billard, L. (2008) Sample Covariance Functions for Complex Quantitative Data. In: Mizuta, M. and Nakano, J., Eds., Proceedings of the International Association of Statistical Computing Conference 2008, 157-163.
[6]  Billard, L. and Diday, E. (2004) Symbolic Data Analysis: Definitions and Examples. Technical Report.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133