A
Fourier-Chebyshev Petrov-Galerkin spectral method is described for high
accuracy computation of linearized dynamics for flow in a circular pipe. The
code used here is based on solenoidal velocity variables and is written in
FORTRAN. Systematic studies are presented of the dependence of eigenval-ues and
other quantities on the axial and azimuthal wave numbers; the Reyn-olds’ number
of up to 107 and the Weissenberg’s number that is considered lower here. The
flow will be considered stable if all the real parts of the ei-genvalues
obtained are negative and unstable if only one of these values is positive.
References
[1]
Meseguer, A. and Trefethen, L.N. (2003) Linearized Pipe Flow to Reynolds Number 107. Journal of Computational Physics, 186, 178-197.
https://doi.org/10.1016/S0021-9991(03)00029-9
[2]
Esmael, A. (2008) Transition to Turbulence for a Flow through Fluid in a Cylindrical Pipe. PhD thesis, INPL, Nancy.
[3]
Carranza, L. (2012) Laminar-Turbulent Transition in Cylindrical Pipe for a Non-Newtonian Fluid. PhD Thesis, INPL, Nancy.
[4]
Oldroyd, J.G. (1950) On the Formulation of Rheological Equations of State. Proceedings of the Royal Society A, 200, 523-541.
https://doi.org/10.1098/rspa.1950.0035
[5]
Bergstrom, L. and Brosa, U. (1988) Onset of Turbulence in a Pipe. Zeitschrift für Naturforschung, 43a, 696.
[6]
Komminaho, J. and Johansson, A.V. (2000) Development of a Spectrally Accurate DNS Code for Cylindrical Geometries, Part V of J. Komminaho, Direct Numerical Simulation of Turbulent Flow in Plane and Cylindrical Geometries. Docoral Thesis, Royal Institute of Technology, Stockholm.
[7]
Zhang, Y., Gandhi, A., Tomboulides, A.G. and Orzag, S.A. (1994) Simulation of Pipe Flow. In: Application of Direct and Large Eddy Simulation to Transition and Turbulence, AGARD Conference, Crete, 17.1-17.9.
[8]
Zikanov, O.Yu. (1996) On the Instability of Pipe Poiseuille Flow. Physics of Fluids, 8, 2923. https://doi.org/10.1063/1.869071
[9]
Bergstrom, L. (1997) Optimal Growth of Small Disturbances in Pipe Poiseuille Flow. Physics of Fluids, 9, 1043.
[10]
Leonard, A. and Wray, A. (1982) A New Numerical Method for the Simulation of Three-Dimensional Flow in a Pipe. In: Krause, E., Ed., Proceedings of the 8th International Conference on Numerical Methods in Fluid Dynamics on Numerical Methods in Fluid Dynamics, Springer, Berlin, 335-342.
https://doi.org/10.1007/3-540-11948-5_40
[11]
Schmid, P.J. and Henningson, D.S. (1994) Optimal Energy Grothin Hagen-Poiseuille Flow. Journal of Fluid Mechanics, 277, 197.
https://doi.org/10.1017/S0022112094002739
[12]
Trefethen, A.E., Trefethen, L.N. and Schmid, P.J. (1999) Spectra and Pseudospectra for pipe Poiseuille Flow. Computer Methods in Applied Mechanics and Engineering, 175, 413-420. https://doi.org/10.1016/S0045-7825(98)00364-8
[13]
Chupin, L. (2003) Contribution to the Study of Mixtures of Viscoelastic Fluids. Doctoral Thesis, The Mathematical Institute of Bordeaux, 177 p.
[14]
Meseguer, A. and Trefethen, L.N. (2001) A Spectral Petrov-Galerkin Formulation for Pipe Flow II: Nonlinear Transitional Stages. Numerical Analysis Group, Oxford University, Rep. 01/19.
[15]
Meseguer, A. and Trefethen, L.N. (2000) A Spectral Petrov-Galerkin Formulation for Pipe Flow (I): Linear Stability and Transient Growth. Numerical Analysis Group, Computing Lab, Oxford University, Rep. 00/18.
[16]
Meseguer, A. and Mellibovsky, F. (2007) On a solenoidal Fourier-Chebyshev Spectral Method for Stability Analysis of the Hagen-Poiseuille Flow. Applied Numerical Mathematics, 57, 920-938. https://doi.org/10.1016/j.apnum.2006.09.002
[17]
Berlioz, J.P. (1979) A propos de l’algorithme QZ. RAIRO-Analyse Numérique, 13, 21-30. https://doi.org/10.1051/m2an/1979130100211
[18]
Quarteroni, A., Sacco, R. and Saleri, F. (2004) Méthodes Numériques: Algorithmes, analyse et applications. Springer-Verlag, Italia, Milano.
[19]
Amodei, L. and Dedieu, J.P. (2008) Analyse numérique matricielle: Cours et exercices corrigés détaillés. Dunod, Paris 2008, SMAI (Société de Mathématiques Appliquées et Industrielle).